全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PSO的队伍演化算法

DOI: 10.16451/j.cnki.issn1003-6059.201506006, PP. 521-527

Keywords: 粒子群优化算法(PSO),队伍演化算法(TeamEA),并行优化,动态控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

粒子群优化算法(PSO)由于其原理简单、较易实现等特点,得到广泛研究和应用.为加快优化速度,提高收敛精度,文中提出基于PSO的队伍演化算法.该算法将优化过程分为两个阶段:第一阶段为保持多样性,把队员分成若干个初级队伍并行优化,形成高级队伍;后一阶段为提高收敛速度,仅优化高级队伍.在整个优化过程中,根据评估队员所取得的成绩,动态控制队员的调整步长和最大调整空间,同时产生教练组,为队员的进步方向提供指导.通过高维多峰测试函数进行测试对比,验证文中算法的优越性和有效性.

References

[1]  Kennedy J, Eberhart R C. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Perth, USA, 1995, IV: 1942-1948
[2]  Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory // Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39-43
[3]  Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer // Proc of the IEEE World Congress on Computational Intelligence. Anchorage, USA, 1998: 69-73
[4]  Shi Y H, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Seoul,Korea, 2001, I: 101-106
[5]  Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Washington, USA, 1999, III: 1951-1957
[6]  Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability and Convergence in a Multidimensional Complex Space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73
[7]  Angeline P J. Using Selection to Improve Particle Swarm Optimization // Proc of the IEEE World Congress on Computational Intelligence. Anchorage, USA, 1998: 84-89
[8]  Wang Y S, Ai J B, Shi Y J, et al. Cultural-Based Particle Swarm Optimization Algorithm. Journal of Dalian University of Technology, 2007, 47(4): 539-544 (in Chinese)(王奕首,艾景波,史彦军,等.文化粒子群优化算法.大连理工大学学报, 2007, 47(4): 539-544)
[9]  Van den Bergh F, Engelbrecht A P. A Cooperative Approach to Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239
[10]  Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans on Systems, Man and Cybernetics, 1979, 9(1): 62-66
[11]  Ni Q J, Deng J M, Xing H C. Dynamic Probabilistic Particle Swarm Optimization Based on Heterogeneous Multiple Population Stratery. Pattern Recognition and Artificial Intelligence, 2014, 27(2): 146-152 (in Chinese)(倪庆剑,邓建明,邢汉承.基于异构多种群策略的动态概率粒子群优化算法.模式识别与人工智能, 2014, 27(2): 146-152)
[12]  Krohling R A, dos Santos C L. PSO-E: Particle Swarm with Exponential Distribution // Proc of the IEEE Congress on Evolutionary Computation. Vancouver, Canada, 2006: 1428-1433
[13]  Peram T, Veeramachaneni K, Mohan C K. Fitness-Distance-Ratio Based Particle Swarm Optimization // Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003: 174-181
[14]  Sabat S L, Ali L. The Hyperspherical Acceleration Effect Particle Swarm Optimizer. Applied Soft Computing, 2009, 9(3): 906-917
[15]  Wang R Y, Hsiao Y T, Lee W P. A New Cooperative Particle Swarm Optimizer with Dimension Partition and Adaptive Velocity Control // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Seoul, Korea, 2012: 103-109
[16]  Wolpert D H, Macredy W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation, 1997, 1(1): 67-82Suganthan
[17]  引入空间领域的概念,将处于同个领域内的粒子组成一个子群分别进行优化,并动态改变阈值保证种群多样性.Kumar等
[18]  分析各种种群拓扑结构对PSO性能的影响,提出设计种群结构的基本原则.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133