全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贝叶斯网络结构改进方法研究*

, PP. 604-610

Keywords: 贝叶斯网络,拓扑结构,条件互信息,复杂性测度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对两阶段的贝叶斯网络建模任务,提出基于网络度量的贝叶斯网络结构改进方法.定义基于条件独立互信息测度、以网络复杂度为惩罚函数的网络度量.该方法通过添加必要的弧和删除多余的弧两个主要步骤,搜索具有最小网络测度的贝叶斯网络为改进后的最佳网络.给出方法的详细过程,证明方法的正确性,并进一步分析算法的复杂度.通过熟知的贝叶斯网络Alarm的实验,验证方法的有效性.

References

[1]  Lam W, Nacchus F. Using New Data to Refine a Bayesian Network // Proc of the 10th Conference on Uncertainty in Artificial Intelligence. Seattle, USA, 1994: 383-390
[2]  Buntine W. Theory Refinement on Bayesian Networks // Proc of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, USA, 1991: 52-60
[3]  Lam W, Bacchus F. Using Causal Information and Local Measures to Learn Bayesian Networks // Proc of the 9th Conference on Uncertainty in Artificial Intelligence. Washington, USA, 1993: 243-250
[4]  Pappas A. The Accuracy of a Bayesian Network. Ph.D Dissertation. London, UK: Imperial College. Department of Computing, 2003
[5]  Li Gang. Graphical Model for Knowledge Discovery. Ph.D Dissertation. Beijing, China: Chinese Academy of Sciences. Institute of Software, 2001(in Chinese) (李 刚.知识发现的图模型方法.博士学位论文.北京:中国科学院软件研究所, 2001)
[6]  Friedman N, Goldszmidt M. Sequential Update of Bayesian Network Structure // Proc of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA, 1997: 165-174
[7]  Bouckaert R R. Properties of Measures for Bayesian Belief Network Learning // Proc of the 10th Conference on Uncertainty in Artificial Intelligence. Seattle, USA, 1994: 102-109
[8]  Cheng J, Bell D A, Liu W R. An Algorithm for Bayesian Belief Network Construction from Data // Proc of the Conference on Artificial Intelligence and Statistics. Ft Lauderdale, USA, 1997: 83-90
[9]  Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988
[10]  Beinlich I A, Suermondt H J, Chavez R M, et al. The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks // Proc of the 2nd European Conference on Artificial Intelligence in Medicine. Berlin, Germany: Springer-Verlag, 1989: 247-256
[11]  Cooper G F. NESTOR: A Computer-Based Medical Diagnostic Aid That Integrates Causal and Probabilistic Knowledge. Ph.D Dissertation. Stanford, USA: Stanford University. Department of Medical Information Sciences, 1984
[12]  Pappas A, Gillies D F. A New Measure for the Accuracy of a Bayesian Network // Proc of the 2nd Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence. London, UK: Springer-Verlag, 2002: 411-419
[13]  Cheng J, Bell D A, Liu W R. Learning Belief Networks from Data: An Information Theory Based Approach // Proc of the 6th International Conference on Information and Knowledge Management. Las Vegas, USA, 1997: 325-331

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133