全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

OCPA仿生自主学习系统及在机器人姿态平衡控制上的应用

, PP. 138-146

Keywords: 操作条件反射概率自动机(OCPA)仿生自主学习,操作条件反射,两轮机器人,姿态平衡控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对本质上非线性、强耦合的两轮自平衡机器人复杂动态系统,构造操作条件反射概率自动机(OCPA)仿生自主学习系统。OCPA仿生自主学习系统是一个基于Skinner操作条件反射的概率自动机,主要特征在于模拟生物的操作条件反射机制,具有仿生的自组织功能,包括自学习和自适应功能,可用于描述、模拟、设计各种自组织系统。从理论上分析OCPA学习系统的操作条件反射学习机制的收敛性。应用于两轮机器人姿态平衡控制的仿真和实验结果均表明,设计的OCPA仿生自主学习系统不需要系统的模型,通过模拟生物的操作条件反射机制,自组织地渐进形成、发展和完善其姿态平衡控制技能。

References

[1]  Urakubo T, Tsuchiya K, Tsujita K. Motion Control of a Two-Wheeled Mobile Robot. Advanced Robotics, 2001, 15(7): 711-728
[2]  Jiang Guofei, Wu Cangpu. Learning to Control an Inverted Pendulum Using Q-Learning and Neural Networks. Acta Automatica Sinica, 1998, 24(5): 662-666 ( in Chinese) (蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制.自动化学报, 1998, 24(5): 662-666)
[3]  Skinner B F. Two Types of Conditioned Reflex and a Pseudo Type. Journal of General Psychology, 1935, 12: 66-77
[4]  Saksida L M, Touretzky D S. Application of a Model of Instrumental Conditioning to Mobile Robot Control // Proc of the Conference on Sensor Fusion and Decentralized Control in Autonomous Robotic Systems. Pittsburgh, USA, 1997: 55-66
[5]  Touretzky D S, Saksida L M. Operant Conditioning in Skinnerbots. Adaptive Behavior, 1997, 5(3/4): 219-247
[6]  Itoh K, Miwa H, Matsumoto M, et al. Behavior Model of Humanoid Robot Based on Operant Conditioning // Pro of the 5th IEEE-RAS International Conference on Humanoid Robots. Tsukuba, Japan, 2005: 220-225
[7]  Huang Yongzhi, Chen Weidong. Design and Implementation of Motion Controller of Two-Wheeled Mobile Robot. Robot, 2004, 26(1): 40-44 (in Chinese) (黄永志,陈卫东.两轮移动机器人运动控制系统的设计与实现.机器人, 2004, 26(1): 40-44)
[8]  Wu Kehe, Li Wei, Liu Changan, et al. Dynamic Control of Two-Wheeled Mobile Robot. Journal of Astronautics, 2006, 27(2): 272-275 (in Chinese) (吴克河,李 为,柳长安,等.双轮驱动式移动机器人的动力学控制.宇航学报, 2006, 27(2): 272-275)
[9]  Kozlowski K, Pazderski D. Stabilization of Two-Wheeled Mobile Robot Using Smooth Control Law: Experiment Study // Proc of the IEEE International Conference on Robotics and Automation. Orlando, USA, 2006: 3387-3392
[10]  McFarland D, Bsser T. Intelligent Behavior in Animals and Robots. Cambridge, USA: MIT Press, 1993
[11]  Aristidis L. Reinforcement Learning Using the Stochastic Fuzzy Min-Max Neural Network. Neural Processing Letters, 2001,13(3): 213-220
[12]  Anderson C W. Learning to Control an Inverted Pendulum Using Neural Networks. IEEE Control System Magazine, 1989, 9(3): 31-37

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133