全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种用Powell方法局部优化的人工萤火虫算法

, PP. 680-684

Keywords: Powell方法,人工萤火虫算法(GSO),函数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对人工萤火虫算法在寻找函数全局最优值时,存在着收敛速度慢、易陷入局部最优、收敛成功率和求解精度低等不足,利用Powell方法强大的局部优化能力,将其作为一局部搜索算子嵌入到人工萤火虫算法,提出一种用Powell方法局部优化的人工萤火虫算法。最后,8个标准函数测试结果表明,改进后人工萤火虫算法在收敛速度、精度和稳定性方面都优于人工萤火虫算法。

References

[1]  Holland J H. Adaptation in Natural and Artificial System. Ann Arbor, USA: The University of Michigan Press, 1975
[2]  Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence. San Francisco, USA: Morgan Kaufman, 2001
[3]  Colorni A, Dorigo M, Maniezzo V, et al. Distributed Optimization by Ant Colonies // Proc of the 1st European Conference on Artificial Life.Paris, France, 1991: 134-142
[4]  Krishnanand K N, Ghose D. Detection of Multiple Source Locations Using a Glowworm Metaphor with Applications to Collective Robotics // Proc of the IEEE Swarm Intelligence Symposium.Pasadena, USA, 2005: 84–91
[5]  Krishnanand K N, Ghose D.Glowworm Swarm Optimization: A New Method for Optimizing MultiModal Functions. International Journal of Computational Intelligence Studies, 2009, 1(1): 93-119
[6]  Tang Huanwen, Qin Xuezhi. Practical Optimization Method.Dalian, China: Dalian University of Technology Press, 2004 (in Chinese)(唐焕文,秦学志.实用最优化方法.大连:大连理工大学出版社, 004)
[7]  Deep K, Bansal J C. Mean Particle Swarm Optimization for Function Optimization. International Journal of Computational Intelligence Studies, 2009, 1(1): 72-92
[8]  He Chunhua, Zhang Xiangwei, Lü Wenge. Parameter Design and Performance Study on Election Survey Algorithm. Computer Engineering, 2010, 36(6): 201-203 (in Chinese)(贺春华,张湘伟,吕文阁.竞选算法的参数设计与性能研究.计算机工程, 2010, 36(6): 201-203)
[9]  Wang Ling, Liu Bo. Particle Swarm Optimization and Scheduling Algorithms. Beijing, China: Tsinghua University Press, 2008 (in Chinese)(王 凌,刘 波.微粒群优化与调度算法.北京:清华大学出版社, 2008)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133