全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正交模糊k平面聚类算法

, PP. 783-791

Keywords: k平面聚类(KPC),模糊k平面聚类(FKPC),正交模糊k平面聚类,降维

Full-Text   Cite this paper   Add to My Lib

Abstract:

在模糊k平面聚类(KPC)算法的基础上,通过引入正交约束提出正交模糊k平面聚类算法(OFKPC)。与KPC及模糊KPC(FKPC)类似,OFKPC仍从原型出发,用k组超平面替代传统的点(类中心)作为聚类原型。同时根据KPC及FKPC的思想,中心超平面是用来尽量区分不同类样本,因此这些超平面法向量构成的矩阵可用来进行特征降维。在人工数据集和UCI数据集上实验表明,OFKPC算法不仅较FKPC算法有更好的聚类效果,且具有更强的特征降维能力。

References

[1]  Webb A R. Statistical Pattern Recognition. 2nd Edition. San Francisco, USA: John Wiley Sons, 2002
[2]  Anderberg M R. Cluster Analysis for Applications. New York, USA: Academic Press,1973
[3]  de Sá Marques J P. Pattern Recognition Concepts, Methods and Applications. New York, USA: Springer, 2001
[4]  Huang Zhexue. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining // Proc of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery. Tucson, USA, 1997: 146-151
[5]  Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA: Kluwer Academic Publishers, 1981
[6]  Lyer N S, Kandel A, Schneider M. Feature-Based Fuzzy Classification for Interpretation of Mammograms. Fuzzy Sets and Systems, 2000, 114(2): 271-280
[7]  Yang M S, Hu Y J, Lin K C, et al. Segmentation Techniques for Tissue Differentiation in MRI of Ophthalmology Using Fuzzy Clustering Algorithm. Journal of Magnetic Resonance Imaging, 2002, 20(2):173-179
[8]  Bradley P S, Mangasarian O L. k-Plane Clustering. Journal of Global Optimization, 2000, 16(1): 23-32
[9]  Wang Ying, Chen Songcan, Zhang Daoqiang, et al. Fuzzy k-Plane Clustering Algorithm. Pattern Recognition and Artificial Intelligence, 2007, 20(5): 704-710 (in Chinese)(王 颖,陈松灿,张道强,等.模糊k平面聚类算法.模式识别与人工智能, 2007, 20(5): 704-710)
[10]  Duchene J, Leclercq S. An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10 (6) : 978-983
[11]  Okada T, Tomita S. An Optimal Orthonormal System for Discriminant Analysis. Pattern Recognition,1985, 18(2):139-144
[12]  Zhu Lin, Wang Shitong, Pan Yonghui, et al. Improved Fuzzy Partitions for k-Plane Clustering Algorithm and Its Robustness Research. Journal of Electronics and Information Technology, 2008, 30(8): 1923-1927 (in Chinese)(朱 林,王士同,潘永惠,等.k平面聚类算法的模糊改进及其鲁棒性研究.电子与信息学报, 2008, 30(8): 1923-1927)
[13]  Tao Xiaoyan, Ji Hongbing, Jing Zhihong. Orthogonal Neighborhood Preserving Embedding Algorithm for Face Recognition. Journal of Xidian University, 2008, 35(3): 439-443 (in Chinese)(陶晓燕,姬红兵,景志宏.一种用于人脸识别的正交邻域保护嵌入算法.西安电子科技大学学报, 2008, 35(3): 439-443)
[14]  Rand W M. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 1971, 66(336): 846-850
[15]  Steinbach M, Karypis G, Kumar V. A Comparison of Document Clustering Techniques // Proc of the KDD Workshop on Text Mining. Boston, USA, 2000: 109-111
[16]  Sammouda R, Sammouda M. Improving the Performance of Hopfield Neural Network to Segment Pathological Liver Color Images. Computer Assisted Radiology and Surgery, 2003, 1256: 232-239
[17]  Fukunaga K, Hostetler L. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. Information Theory, 1975, 21(1): 32-40
[18]  Cover T W, Hart P E. Nearest Neighbor Pattern Classification. IEEE Trans on Information Theory, 1967, 13(6): 21-27

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133