全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于查询聚类的排序学习算法

, PP. 118-123

Keywords: 排序学习,排序函数,谱聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

排序学习算法作为信息检索与机器学习的一个交叉领域,越来越受到人们的重视。然而,几乎没有排序学习算法考虑到查询差异的存在。文中查询被建模为多元高斯分布,KL距离被用来度量查询之间的距离,利用谱聚类方法对查询进行聚类,为每个聚类类别训练一个排序函数。实验结果表明经过聚类得到的排序函数需要较少的训练样例,但是它的性能却和没有经过聚类得到的排序函数具有可比性,甚至优于后者。

References

[1]  Duh K,Kirchhoff K.Learning to Rank with Partially-Labeled Data // Proc of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Singapore,Singapore,2008: 251-258
[2]  Broder A.A Taxonomy of Web Search.ACM SIGIR Forum,2002,36(2): 3-10
[3]  Rose D E,Levinson D.Understanding User Goals in Web Search // Proc of the 13th International Conference on World Wide Web.New York,USA,2004: 13-19
[4]  Gravano L,Hatzivassiloglou V,Lichtenstein R.Categorizing Web Queries According to Geographical Locality // Proc of the 20th International Conference on Information and Knowledge Management.New Orleans,USA,2003: 325-333
[5]  Shen Dou,Sun Jiantao,Yang Qiang,et al.Building Bridges for Web Query Classification // Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Seattle,USA,2006: 131-138
[6]  Liu Yiqun,Zhang Min,Ru Liyun,et al.Automatic Query Type Identification Based on Click through Information // Proc of the 3rd Asia Information Retrieval Symposium.Singapore,Singapore,2006: 593-600
[7]  Lee U,Liu Zhenyu,Cho J.Automatic Identification of User Goals in Web Search // Proc of the 14th International Conference on World Wide Web.Chiba,Japan,2005: 391-400
[8]  Craswell N,Hawking D,Robertson S.Effective Site Finding Using Link Anchor Information // Proc of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New Orleans,USA,2001: 250-257
[9]  Westerveld T,Kraaij W,Hiemstra D.Retrieving Web Pages Using Content,Links,URLs and Anchors // Proc of the 10th Text Retrieval Conference.Gaithersburg,USA,2001: 663-672
[10]  Kang I,Kim G.Query Type Classification for Web Document Retrieval // Proc of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto,Canada,2003: 64-71
[11]  Crammer K,Singer Y.Pranking with Ranking // Proc of the Conference on Neural Information Processing Systems.Whistler,Canada,2002: 641-647
[12]  Herbrich R,Graepel T,Obermayer K.Large Margin Rank Boundaries for Ordinal Regression.Advances in Large Margin Classifiers,2000,88(2): 115-132
[13]  Joachims T.Optimizing Search Engines Using Click through Data // Proc of the 8th ACM Conference on Knowledge Discovery and Data Mining.Edmonton,Canada,2002: 133-142
[14]  Yue Yisong,Finley T,Radlinski F,et al.A Support Vector Method for Optimizing Average Precision // Proc of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Amsterdam,Netherlands,2007: 271-278
[15]  Jordan M,Weiss Y.On Spectral Clustering: Analysis and an Algorithm // Dietterich T,Becker S,Ghahramani Z,eds.Advances in Neural Information Processing Systems.Cambridge,USA: MIT Press,XIV: 849-856
[16]  Jarvelin K,Kekalainen J.IR Evaluation Methods for Retrieving Highly Relevant Documents // Proc of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Athens,Greece,2000: 41-48
[17]  Jarvelin K,Kekalainen J.Cumulated Gain-Based Evaluation of IR Techniques.ACM Trans on Information Systems,2002,20(4): 422-446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133