全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于压缩传感的邻域嵌入

, PP. 684-690

Keywords: 流形学习,压缩传感(CS),半监督学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于谱流形学习算法的一个核心问题是局部邻域的构建,可通过KNN或ε准则构建局部邻域。受压缩传感理论的启发,提出一种基于l2和l1范数重构准则的邻域构建模式,称之为基于压缩传感的邻域嵌入(CSNE)。在此基础上,利用无标签数据,提出半监督的CSNE。在多个数据集上的可视化和半监督分类实验,证明该算法的有效性。

References

[1]  Wright J,Ganesh A,Yang A,et al.Robust Face Recognition via Sparse Representation.IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2): 1-21
[2]  TurkM,Pentland A.Eigenfaces for Recognition.Journal of Cognitive Neuroscience,1991,3(1): 71-86
[3]  Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces: Recognition Using Class Specific Linear Projection.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7): 711-720
[4]  He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face Recognition Using Laplacianfaces.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(3): 328-340
[5]  Roweis S T,Saul L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding.Science,2000,290(5500): 2323-2326
[6]  Tenenbaum J B,Silva V D,Langford J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction.Science,2000,290(5500): 2319-2323
[7]  Zhang Xhenyue,Zha Hongyuan.Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment.SIAM Journal of Scientific Computing,2005,26(1): 313-338
[8]  Belkin M,Niyogi P.Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.Neural Computation,2003,15(6): 1373-1396
[9]  Yan Shuicheng,Xu Dong,Zhang Benyu,et al.Graph Embedding and Extension: A General Framework for Dimensionality Reduction.IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(1): 40-51
[10]  Cheng Bin,Yang Jianchao,Yan Shuicheng,et al.Learning with l1-Graph for Image Analysis.IEEE Trans on Image Processing,2010,19(4): 858-866
[11]  Smith K.Mind-Reading with a Brain Scan [EB/OL].[2008-3-5].http://www.nature.com/news/2008/080305/full/news.2008.650.html
[12]  Candes E,Rudelson M,Tao T,et al.Error Correction via Linear Programming // Proc of the 46th Annual IEEE Symposium on Foundations of Computer Science.Pittsburgh,USA,2005: 295-308
[13]  Donoho D.For Most Large Underdetermined Systems of Linear Equations,the Minimal l1-Norm Solution is also the Sparsest Solution.Communications on Pure and Applied Mathematics,2006,59(6): 797-829
[14]  Sanja F,Leonardis A.Combining Reconstructive and Discriminative Subspace Methods for Robust Classification and Regression by Subsampling.IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(3): 337-350
[15]  Jiao Licheng,Bo Liefeng,Wang Ling.Fast Sparse Approximation for Least Square Support Vector Machine.IEEE Trans on Neural Networks,2007,18(3): 685-697
[16]  Abdallah S,Plumbley M.Unsupervised Analysis of Polyphonic Music by Sparse Coding.IEEE Trans on Neural Networks,2006,17(1): 179-196
[17]  Li Y,Cichocki A,Amari S.Lind Estimation of Channel Parameters and Source Components for Egg Signals: A Sparse Factorization Approach.IEEE Trans on Neural Networks,2006,17(1): 419-431
[18]  Zou H,Hastie T,Tibshirani R.Sparse Principal Component Analysis.Journal of Computational and Graphical Statistics,2006,15(2): 265-286
[19]  Moghaddam B,Weiss Y,Avidan S.Generalized Spectral Bounds for Sparse LDA // Proc of the International Conference on Machine Learning.Pittsburgh,USA,2006: 641-648
[20]  Tibshirani R.Regression Shrinkage and Selection via the Lasso.Journal of Royal Statistics Society,1996,58(1): 267-288
[21]  Zhou Zhihua,Xu Junming.On the Relation between Multi-Instance Learning and Semi-Supervised Learning // Proc of the International Conference on Machine Learning.Corvallis,USA,2007: 211-218
[22]  Zhang Dan,Wang Jingdang,Wang Fei,et al.Semi-Supervised Classification with Universum // Proc of the SIAM International Conference on Data Mining.Auckland,New Zealand,2008: 323-333
[23]  Belkin M,Matveeva I,Niyogi P.Regularization and Semi-Supervised Learning on Large Graphs // Proc of the Conference on Learning Theory.Banff,Canada,2004: 624-638
[24]  Zhu X,Ghahramani Z,Lafferty J.Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions // Proc of the International Conference on Machine Learning.Washington,USA,2003: 912-919
[25]  Guo Zhen,Zhang Zhongfei,Xing E.Semi-Supervised Learning Based on Semi-Parametric Regularization // Proc of the SIAM International Conference on Data Mining.Auckland,New Zealand,2008: 132-142
[26]  Yan Shuicheng,Wang Huan.Semi-Supervised Learning by Sparse Representation // Proc of the SIAM International Conference on Data Mining.Sparks,USA,2009: 792-801
[27]  Cai Deng,He Xiaofei,Han Jiawei.Semi-Supervised Discriminant Analysis // Proc of the International Conference on Computer Vision.Rio de Janeiro,Brazil,2007: 1-7
[28]  Geng Xin,Zhan Dechuan,Zhou Zhihua.Supervised Nonlinear Dimensionality Reduction for Visualization and Classification.IEEE Trans on Systems,Man and Cybernetics,2005,35(6): 1098-1107

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133