全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

核矩阵逼近的贪心算法*

, PP. 138-143

Keywords: 核算法,核矩阵,低秩矩阵,贪心算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在综合考虑数据之间的相关性与残差范数最小的基础上,本文分别提出向前贪心算法、向后贪心算法和混合贪心算法寻踪最佳低秩逼近.为此提出一种稀疏回归算法(SRA).SRA能有效减少“训练样本”,并具备良好的推广能力.将SRA应用于2个实际的模式识别问题,并与支持向量机(SVM)、核主元回归(KPCR)和关键算法(KA)进行比较,验证SRA的有效性.

References

[1]  ShaweTaylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press, 2004
[2]  Müller K R, Mika S, Ratsch G, et al. An Introduction to Kernel Based Learning Algorithm. IEEE Trans on Neural Networks, 2001, 12(2): 181201
[3]  Fine S, Scheinberg K. Efficient SVM Training Using LowRank Kernel Representations. Journal of Machine Learning Research, 2002, 2(2): 243264
[4]  Smola A J, Schlkopf B. Sparse Greedy Matrix Approximation for Machine Learning // Proc of the 17th International Conference on Machine Learning.San Francisco, USA, 2000: 911918
[5]  Vapnik V N. The Nature of Statistical Learning Theory. 2nd Edition. New York, USA: SpringerVerlag, 1999
[6]  Scholkpf B, Smola A J. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, USA: MIT Press, 2001
[7]  Chandrasekaran S, Ipsen I. On Rank Revealing QR Factorizations. SIAM Journal on Matrix Analysis and Applications, 1994, 15(2): 592622
[8]  Xu Jianhua, Zhang Xuegong. Nonlinear Kernel Forms of Classical Linear Algorithms. Control and Decision, 2006, 21(1): 16,12 (in Chinese) (许建华,张学工.经典线性算法的非线性核形式.控制与决策, 2006, 21(1): 16,12)
[9]  Zhang Zhenyue, Zha Hongyuan. Linear LowRank Approximation and NonLinear Dimensionality Reduction. Science in China: Series A, 2005, 35(3): 273285 (in Chinese) (张振跃,查宏远.线性低秩逼近与非线性降维.中国科学A辑, 2005, 35(3): 273285)
[10]  Chan T F, Hansen P C. Some Applications of the Rank Revealing QR Factorizations. SIAM Journal on Scientific and Statistical Computing, 1992, 13(3): 727741
[11]  Ye Huanqiu. The LimitRank Maximum Subset Problem. Master Dissertation. Hangzhou, China: Zhejiang University. Department of Mathematics, 2001 (in Chinese) (叶环球.限秩最大子集问题.硕士学位论文.杭州:浙江大学.数学系, 2001)
[12]  Stewart G W. An Updating Algorithm for Subspace Tracking. IEEE Trans on Signal Processing, 1992, 40(6): 15351541
[13]  Jia Zhongxiao, Zhang Ping. Two Refined Lanczos Algorithms for Computing the Largest/Smallest Singular Values and Associated Singular Vectors of a Large Matrix. Mathematica Numerica Sinica, 2003, 25(3): 293304 (in Chinese) (贾仲孝,张 萍.计算大规模矩阵最大最小奇异值和奇异向量的两个精化Lanczos算法.计算数学, 2003, 25(3): 293304)
[14]  Cox D D, O’Sullivant F. Asymptotic Analysis of Penalized Likelihood and Related Estimators. Annals of Statistics, 1990, 18(4): 16761695
[15]  Poggio T, Smale S. The Mathematics of Learning: Dealing with Data. Notices of American Mathematical Society, 2003, 50(5): 537544
[16]  Cucker F, Smale S. Best Choices for Regularization Parameters in Learning Theory: On the BiasVariance Problem. Foundations of Computational Mathematics, 2002, 2(4): 413 428
[17]  Simon H. Neural Networks: A Comprehensive Foundation. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 1999
[18]  Franc V. Statistical Pattern Recognition Toolbox for Matlab [DB/OL]. [20051102]. http://cmpfelk.cvut.cz/cmp/software/stprool/index.html

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133