全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时态约束下的频繁模式挖掘算法*

, PP. 538-544

Keywords: 时态频繁模式挖掘算法(TemFP),时态频繁模式,时态区间查询,双树结构(DB+tree)

Full-Text   Cite this paper   Add to My Lib

Abstract:

时态数据是一类重要的数据信息.利用数据中包含的时间属性可以形象描述数据中潜在的变化规律,预测将来可能的发展趋势.本文提出一种时态频繁模式挖掘算法(TemFP).根据现有的时态查询函数,该算法给出一种用于存储频繁模式时态属性的双树结构(DB+tree).利用包含DB+tree的时态频繁模式树,使用户定义的时态规则快速查询成为可能.实验结果表明该算法是有效和可扩展的.

References

[1]  Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases // Proc of the ACM SIGMOD International Conference on Management of Data. Washington, USA, 1993: 207216
[2]  Chen X, Petrounias I, Heathfield H. Discovering Temporal Association Rules in Temporal Databases // Proc of the International Workshop on Issues and Applications of Database Technology. Berlin, Germany, 1998: 312319
[3]  Zimbrao G, de Souza J M, de Abneida V T, et al. An Algorithm to Discover CalendarBased Temporal Association Rules with Item's Lifespan Restriction // Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Alberta, Canada, 2002: 701706
[4]  Ouyang Weimin, Cai Qingsheng. Discovery of Association Rules with Temporal Constraint in Databases. Journal of Software, 1999, 10(5): 527532 (in Chinese) (欧阳为民,蔡庆生.在数据库中发现具有时态约束的关联规则.软件学报, 1999, 10(5): 527532)
[5]  Ma Yuanyuan, Sun Zhihui, Gao Hongmei. Mining the Increment Association Rules in Temporal Database. Journal of Computer Research and Development, 2000, 12(12): 14461451 (in Chinese) (马元元,孙志挥,高红梅.时态数据库中增量关联规则的挖掘. 计算机研究与发展, 2000, 12 (12): 14461451)
[6]  Mao Guojun, Liu Chunnian. A Method of Data Mining Based on Temporal Constraints. Acta Electronica Sinica, 2003, 11(11): 16901694 (in Chinese) (毛国君,刘椿年.时态约束下的数据挖掘问题及算法.电子学报, 2003, 11(11): 16901694)
[7]  Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation // Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000: 112
[8]  Song Yuqing, Zhu Yuquan, Sun Zhihui, et al. An Algorithm and Its Updating Algorithm Based on Frequent Pattern Tree for Mining Constrained Maximum Frequent Itemsets. Journal of Computer Research and Development, 2005, 17(5): 777783 (in Chinese) (宋余庆,朱玉全,孙志挥,等.一种基于频繁模式树的约束最大频繁项目集挖掘及其更新算法.计算机研究与发展, 2005, 17(5): 777783)
[9]  Zhang Jin, Ma Haibing,Hu Yunfa. A SelfAdaptive Algorithm Based on FPTree for Frequent Pattern Mining. Pattern Recognition and Artificial Intelligence, 2005, 18(6): 763768 (in Chinese) (张 锦,马海兵,胡运发.一种基于FPTree的频繁模式挖掘自适应算法. 模式识别与人工智能, 2005, 18(6): 763768)
[10]  Goethals B. Memory Issues in Frequent Itemset Mining // Proc of the ACM Symposium on Applied Computing. Nicosia, Cyprus, 2004: 1417
[11]  Ghoting A, Buehrer G, Parthasarathy S, et al. CacheConscious Frequent Pattern Mining on a Modern Processor // Proc of the 31st International Conference on Very Large Date Bases. Trondheim, Norway, 2005: 577588
[12]  Yan Weimin, Wu Weimin. Data Structures. Beijing, China: Tsinghua University Press, 1993 (in Chinese) (严蔚敏,吴伟民.数据结构.北京:清华大学出版社, 1993)
[13]  Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules // Proc of the 20th International Conference on Very Large Data Bases. Santiago, Chile, 1994: 487499

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133