全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种求解多目标优化问题的粒子群算法*

, PP. 606-611

Keywords: 进化计算,多目标优化,多目标粒子群优化(MOPSO),粒子群优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种多目标粒子群算法,其采用外部集合保存当前找到的最优解集,采用强ε支配关系更新外部集合,使解集保持良好的分布性.对粒子全局极值的选取设计新的选择思路,提出极值变异的思想,采用新的粒子更新策略加快解集的收敛,加入自适应变异算子避免陷入局部非劣最优解.通过使用一系列标准的测试函数进行实验,实验结果表明该算法在保持解集分布性和收敛性方面较有效,且实现简单、表现稳定.

References

[1]  Jiang Hao, Tang Huanrong, Zheng Jinhua. A Fast MultiObjective Genetic Algorithm Based on Quick Sort. Computer Engineering and Applications, 2005, 41(30): 4648 (in Chinese) (蒋 浩,唐欢容,郑金华.一种基于快速排序的快速多目标遗传算法.计算机工程与应用, 2005, 41(30): 4648)
[2]  Zheng Jinhua, Ling C X, Shi Zhongzhi, et al. Some Discussions about MOGAs: Individual Relations, Nondominated Set,and Application on Automatic Negotiation // Proc of the Congress on Evolutionary Computation. Portland, USA, 2004, Ⅰ: 706-712
[3]  van Veldhuizen D A, Lamont G B. Multiobjective Evolutionary Algorithm Research: A History and Analysis. Technical Report, TR-98-03, Dayton, USA: Air Force Institute of Technology. Department of Electrical and Computer Engineering, 1998
[4]  Schoot J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithms Optimization. Master Dissertation. Cambridge, USA: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics, 1995
[5]  Deb K, Agrawal S, Pratap A, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGAII. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182197
[6]  Knowles J, Corne D. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation // Proc of the Congress on Evolutionary Computation. Mayflower Hotel, USA, 1999, Ⅰ: 98-105
[7]  Hu X, Eberhart R. Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization // Proc of the IEEE Congress on Evolutionary Computation. Honolulu, USA, 2002: 1677-1681
[8]  Zhang Libiao, Zhou Chunguang, Ma Ming, et al. Solutions of MultiObjective Optimization Problems Based on Particle Swarm Optimization. Journal of Computer Research and Development, 2004, 41(7): 12861291 (in Chinese) (张利彪,周春光,马 铭,等.基于粒子群算法求解多目标优化问题.计算机研究与发展, 2004, 41(7): 12861291)
[9]  Coello C C A, Pulido G T, Lechunga M S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256279
[10]  SalazarLechuga M, Rowe J E. Particle Swarm Optimization and Fitness Sharing to Solve MultiObjective Optimization Problems // Proc of the IEEE Congress on Evolutionary Computation. Edinburgh, UK, 2005, Ⅱ: 12041211
[11]  Laumanns M, Thiele L, Deb K, et al. On the Convergence and Diversity Preservation Properties of MultiObjective Evolutionary Algorithms. Technical Report, TIKReport 108, Zürich, Switzerland: Swiss Federal Institute of Technology. Computer Engineering and Communication Networks Laboratory, 2001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133