全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于熵约束的快速FCM聚类多阈值图像分割算法

, PP. 221-226

Keywords: 图像分割,多阈值,模糊c均值(FCM),重采样,

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统FCM聚类多阈值分割算法计算费时、应用范围受限制的缺点,提出基于信息熵判据的快速FCM聚类多阈值分割算法.研究在保持图像信息前提下重采样率必须满足的最基本条件,并给出约束公式.根据信息熵原理,计算原图像和重采样图像的熵,根据重采样图像相对信息熵变化情况,判别满足熵约束的采样率.实验结果表明,在多阈值图像分割中,本文算法在基本保持与传统FCM聚类同水平分割效果的前提下,平均计算用时较传统FCM分割算法缩短,效率明显提高,实验结果和理论分析相符,证明本文算法的正确性.

References

[1]  Pal N R, Pal S K. A Review on Image Segmentation Techniques. Pattern Recognition, 1993, 26(9): 12771294
[2]  Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York, USA: Plenum Press, 1981
[3]  Udupa J K, Samarasekera S. Fuzzy Connectedness and Object Definition: Theory, Algorithm and Applications in Image Segmentation. Graph Models and Image Processing, 1996, 58(3): 246261
[4]  Yamany S M, Farag A A, Hsu S. A Fuzzy Hyperspectral Classifier for Automatic Target Recognition (ATR) Systems. Pattern Recognition Letters, 1999, 20(11/12/13): 14311438
[5]  Szilágyi L, Benyó Z, Szilágy S M, et al. MR Brain Image Segmentation Using an Enhanced Fuzzy cMeans Algorithm // Proc of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun, Mexico, 2003, Ⅰ: 724726
[6]  Chen Songcan, Zhang Daoqiang. Robust Image Segmentation Using FCM with Spatial Constraints Based on New KernelInduced Distance Measure. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(4): 19071916
[7]  Hathaway R J, Bezdek J C, Hu Yingkang. Generalized Fuzzy cMeans Clustering Strategies Using L Norm Distance. IEEE Trans on Fuzzy Systems, 2000, 8(5): 576582
[8]  Leski J. An Insensitive Approach to Fuzzy Clustering. International Journal of Applied Mathematics and Computer Science, 2001, 11(4): 9931007
[9]  Pham D L, Prince J L. Adaptive Fuzzy cMeans Algorithm for Image Segmentation in the Presence of Intensity Inhomogeneities. Proc of SPIE, 1998, 3338: 553563
[10]  Tolias Y A, Panas S M. On Applying Spatial Constraints in Fuzzy Image Clustering Using a Fuzzy RuleBased System. IEEE Signal Processing Letters, 1998, 5(10): 245247
[11]  Liew A W C, Leung S H, Lau W H. Fuzzy Image Clustering Incorporating Spatial Continuity. IEE Proc: Vision Image Signal Processing, 2000, 147(2): 185192
[12]  Pham D L. Fuzzy Clustering with Spatial Constraints // Proc of the International Conference on Image Processing. New York, USA, 2002: Ⅱ: 6568
[13]  Liew A W C, Yan Hong. An Adaptive Spatial Fuzzy Clustering Algorithm for 3D MR Image Segmentation. IEEE Trans on Medical Imaging, 2003, 22(9): 10631075
[14]  Pham D L, Prince J L. Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Trans on Medical Imaging, 1999, 18(9): 737752
[15]  Ahmed M N, Yamany S M, Mohamed N, et al. A Modified Fuzzy cMeans Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans on Medical Imaging, 2002, 21(3): 193199
[16]  Li Xiang, Li Liang, Lu Hongbing, et al. Inhomogeneity Correction for Magnetic Resonance Images with Fuzzy cMeans Algorithm. Proc of SPIE, 2003, 5032: 9951005
[17]  He R, Datta S, Sajia B R, et al. Adaptive FCM with Contextual Constrains for Segmentation of MultiSpectral MRI // Proc of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA, 2004: Ⅲ: 16601663
[18]  Yen J C, Chang F J, Chang S. A New Criterion for Automatic Multilevel Thresholding. IEEE Trans on Image Processing, 1995, 4(3): 370378
[19]  Li E H, Lee C K. Minimum CrossEntropy Thresholding. Pattern Recognition, 1993, 26(3): 617625
[20]  Brink A D, Pendcock N E. Minimum CrossEntropy Threshold Selection. Pattern Recognition, 1996, 29(1): 179188
[21]  Albuquerque M P, Esquet I A, Gesualdi M A R. Image Thresholding Using Tsallis Entropy. Pattern Recognition Letters, 2004, 25(9): 10591065

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133