Yang Tao, Li S Z, Pan Quan, et al. Real-Time Multiple Object Tracking with Occlusion Handling in Dynamic Scenes // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅰ: 970-975
[2]
Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction // Proc of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004, Ⅱ: 28-31
[3]
Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757
[4]
Elgammal A, Duraiswami R, Harwood D, et al. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc of the IEEE, 2002, 90(7): 1151-1163
[5]
Chen Rui, Deng Yu, Xiang Shiming, et al. A Non-Parametric Foreground/Background Segmentation Method by Fusion of Intensity and Edge Feature. Journal of Computer-Aided Design & Computer Graphics, 2005, 17(6): 1278-1284 (in Chinese) (陈 睿,邓 宇,向世明,等.结合强度和边界信息的非参数前景/背景分割方法.计算机辅助设计与图形学学报, 2005, 17(6): 1278-1284)
[6]
Yang Tao, Pan Quan, Li S Z, et al. Multiple Layer Based Background Maintenance in Complex Environment // Proc of the 3rd International Conference on Image and Graphics. Hong Kong, China, 2004: 112-115
[7]
Zhou Yue, Gong Yihong, Hai Tai. Background Modeling Using Time Dependent Markov Random Field with Image Pyramid [EB/OL]. [2005-11-12]. http://www.soe.ucsc.edu/~tao/pps/Motion05.pdf
[8]
Migdal J, Grimson W E L. Background Subtraction Using Markov Thresholds // Proc of the IEEE Workshop on Motion and Video Computing. Colorado, USA, 2005,Ⅱ: 58-65
[9]
Yaser S, Mubarak S. Bayesian Modeling of Dynamic Scenes for Object Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792
[10]
Martel-Brisson N, Zaccarin A. Moving Cast Shadow Detection from a Gaussian Mixture Shadow Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 643-648
[11]
Wang Y, Loe K F, Wu J K. A Dynamic Conditional Random Field Model for Foreground and Shadow Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(2): 279-289
[12]
Porikli F, Thornton J. Shadow Flow: A Recursive Method to Learn Moving Cast Shadows // Proc of the IEEE International Conference on Computer Vision. Beijing, China, 2005, Ⅰ: 891-898
[13]
Berthod M, Kato Z, Yu S, et al. Bayesian Image Classification Using Markov Random Fields. Image and Vision Computing, 1996, 14(4): 285-295