全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合时空信息的前景/阴影视频分割算法*

, PP. 546-551

Keywords: 视频目标分割,阴影检测与消除,时空邻域关系,马尔可夫随机场(MRF)

Full-Text   Cite this paper   Add to My Lib

Abstract:

视频目标分割是视频目标跟踪、统计以及识别的基础.阴影是影响目标分割准确性的重要因素,有效对阴影进行检测与消除可提高视频目标分割的质量.本文提出一种采用状态机对阴影进行建模的方法,通过阴影模型来消除阴影.算法定义背景、阴影以及前景的势函数,利用马尔可夫随机场融合视频序列的时空邻域信息,采用Gibbs采样算法求解最大后验概率,提高视频目标分割的质量.在不同环境下对本文算法的有效性进行测试,并与其他算法进行比较,结果证明本文算法的有效性.

References

[1]  Yang Tao, Li S Z, Pan Quan, et al. Real-Time Multiple Object Tracking with Occlusion Handling in Dynamic Scenes // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅰ: 970-975
[2]  Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction // Proc of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004, Ⅱ: 28-31
[3]  Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757
[4]  Elgammal A, Duraiswami R, Harwood D, et al. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc of the IEEE, 2002, 90(7): 1151-1163
[5]  Chen Rui, Deng Yu, Xiang Shiming, et al. A Non-Parametric Foreground/Background Segmentation Method by Fusion of Intensity and Edge Feature. Journal of Computer-Aided Design & Computer Graphics, 2005, 17(6): 1278-1284 (in Chinese) (陈 睿,邓 宇,向世明,等.结合强度和边界信息的非参数前景/背景分割方法.计算机辅助设计与图形学学报, 2005, 17(6): 1278-1284)
[6]  Yang Tao, Pan Quan, Li S Z, et al. Multiple Layer Based Background Maintenance in Complex Environment // Proc of the 3rd International Conference on Image and Graphics. Hong Kong, China, 2004: 112-115
[7]  Zhou Yue, Gong Yihong, Hai Tai. Background Modeling Using Time Dependent Markov Random Field with Image Pyramid [EB/OL]. [2005-11-12]. http://www.soe.ucsc.edu/~tao/pps/Motion05.pdf
[8]  Migdal J, Grimson W E L. Background Subtraction Using Markov Thresholds // Proc of the IEEE Workshop on Motion and Video Computing. Colorado, USA, 2005,Ⅱ: 58-65
[9]  Yaser S, Mubarak S. Bayesian Modeling of Dynamic Scenes for Object Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792
[10]  Martel-Brisson N, Zaccarin A. Moving Cast Shadow Detection from a Gaussian Mixture Shadow Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 643-648
[11]  Wang Y, Loe K F, Wu J K. A Dynamic Conditional Random Field Model for Foreground and Shadow Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(2): 279-289
[12]  Porikli F, Thornton J. Shadow Flow: A Recursive Method to Learn Moving Cast Shadows // Proc of the IEEE International Conference on Computer Vision. Beijing, China, 2005, Ⅰ: 891-898
[13]  Berthod M, Kato Z, Yu S, et al. Bayesian Image Classification Using Markov Random Fields. Image and Vision Computing, 1996, 14(4): 285-295

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133