全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于添加人工数据的高差异性聚类集体生成方法*

, PP. 682-688

Keywords: 聚类集成,集体差异性,人工数据

Full-Text   Cite this paper   Add to My Lib

Abstract:

集体差异性被认为是集成学习中的一个关键因素.在聚类集成的研究中,生成聚类集体的方法有许多种,但就专门致力于生成高差异性聚类集体的方法研究较少.基于此,本文提出生成高差异性聚类集体的方法CEAN和ICEAN,在算法中通过引入人工数据来增加聚类集体的差异性.用实验比较了CEAN和ICEAN与文献中出现的常用聚类集体生成方法,实验表明CEAN和ICEAN确实能增加生成集体的差异性,从而在相似平均集体成员准确度情况下使得聚类集成的效果更好.

References

[1]  Topchy A P, Jain A K, Punch W F. Combining Multiple Weak Clusterings // Proc of the 3rd IEEE International Conference on Data Mining. Melbourne, USA, 2003: 331-338
[2]  Fred A L N. Finding Consistent Clusters in Data Partitions // Proc of the 2nd International Workshop on Multiple Classifier Systems. Cambridge, UK, 2001: 309-318
[3]  Fred A L N, Jain A K. Data Clustering Using Evidence Accumulation // Proc of the 16th International Conference on Pattern Recognition. Québec, Canada, 2002, Ⅳ: 276-280
[4]  Strehl A, Ghosh J. Cluster Ensembles-A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research, 2002, 3(3): 583-617
[5]  Dudoit S, Fridlyand J. Bagging to Improve the Accuracy of a Clustering Procedure. Bioinformatics, 2003, 19(9): 1090-1099
[6]  Law M H C, Topchy A P, Jain A K. Multiobjective Data Clustering // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 424-430
[7]  Fern X Z, Brodley C E. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach // Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003: 186-193
[8]  Topchy A, Jain A K, Punch W. Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881
[9]  Frossyniotis D, Likas A, Stafylopatis A. A Clustering Method Based on Boosting. Pattern Recognition Letters, 2004, 25(6): 641-654
[10]  Tang Wei, Zhou Zhihua. Bagging-Based Selective Clusterer Ensemble. Journal of Software, 2005, 16(4): 496-502 (in Chinese) (唐 伟,周志华.基于Bagging的选择性聚类集成.软件学报, 2005, 16(4): 496-502)
[11]  Al-Razgan M, Domeniconi C. Weighted Clustering Ensembles // Proc of the 6th SIAM International Conference on Data Mining. Bethesda, USA, 2006: 24-35
[12]  Domeniconi C, Papadopoulos D, Gunopulos D, et al. Subspace Clustering of High Dimensional Data // Proc of the SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004: 58-62
[13]  Melvilie P, Mooney R J. Creating Diversity in Ensembles Using Artificial Data. Information Fusion, 2005, 6(1): 99-111
[14]  Karypis G, Kumar V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 1998, 20(1): 359-392
[15]  UCI Machine Learning Repository [DB/OL]. [2006-04-01]. http://www.ics.uci.edu/~mlearn/databases
[16]  Kuhn H W. The Hungarian Method for the Assignment Problem. Naval Research Logistics, 1955, 2(2): 83-97

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133