全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于多姿态人耳识别的局部线性嵌入及其改进算法*

, PP. 427-432

Keywords: 流形学习,局部线性嵌入(LLE),多姿态人耳识别,改进的局部线性嵌入算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分析目前人耳识别所采用的各种主要方法,将流形学习局部线性嵌入(LLE)算法用于多姿态人耳识别,并针对LLE算法存在的局限提出一种改进LLE算法.改进后的LLE算法依据Hsim距离选择邻域,较好地避免了高维空间中邻域点选取的不稳定性.实验结果表明,利用LLE解决多姿态人耳识别问题是可行的而且具有较明显的优势.用改进LLE算法进行多姿态人耳识别能够获得更高的识别率,验证了算法改进的有效性.

References

[1]  Mu Zhichun, Xi Dechun, Xu Zhengguang, et al. Ear Feature Extraction Combining the Shape Feature of Outer Ear with the Structure Feature of Inner Ear. Journal of University of Science and Technology Beijing, 2006, 28(5): 497-500 (in Chinese) (穆志纯,席德春,徐正光,等.外耳形状特征和内耳结构特征结合的人耳特征提取.北京科技大学学报, 2006, 28(5): 497-500)
[2]  Middendorff C, Bowyer K W, Yan Ping. Multi-Modal Biometrics Involving the Human Ear // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-2
[3]  Chen Hui, Bir B. Human Ear Recognition in 3D. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(4): 718-737
[4]  Yan Ping, Bowyer K W. Biometric Recognition Using 3D Ear Shape. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1297-1308
[5]  Yuan Li, Mu Zhichun, Zhang Yu, et al. Ear Recognition Using Improved Non-Negative Matrix Factorization // Proc of the 18th International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅳ: 501-504
[6]  Iannarelli A. Ear Identification. Fremont, USA: Paramount Publishing Company, 1989
[7]  Moreno B, Aánchez , Vélez J. Use Outer Ear Images for Personal Identification in Security Applications // Proc of the IEEE 33rd Annual International Carnahan Conference on Security Technology. Madrid, Spain, 1999: 469-476
[8]  Burge M, Burge W. Ear Biometrics in Computer Vision // Proc of the 15th International Conference of Pattern Recognition. Barcelona, Spain, 2000, Ⅱ: 822-826
[9]  Hurley D J, Nixon M S, Carter J N. Force Field Feature Extraction for Ear Biometrics. Computer Vision and Image Understanding. 2005, 98(3): 491-512
[10]  Wang Zhongli, Mu Zhichun, Wang Xiuyan, et al. Ear Recognition Based on Moment Invariants. Pattern Recognition and Artificial Intelligence, 2004, 17(4): 502-505 (in Chinese) (王忠礼,穆志纯,王修岩,等.基于不变矩匹配的人耳识别.模式识别与人工智能, 2004, 17(4): 502-505)
[11]  Yan Ping, Bowyer K W. Empirical Evaluation of Advanced Ear Biometrics // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅲ: 41
[12]  Yand M H. Kernel Eigenfaces vs Kernel Fisherfaces: Face Recognition Using Kernel Methods // Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002: 215-220
[13]  Zhang Junping, Shen Huanxing, Zhou Zhihua. Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition // Proc of the 5th Chinese Conference on Biometric Recognition. Guangzhou, China, 2004: 296-304
[14]  Yuan Li. Study on Some Key Issues in Ear Recognition. Ph.D Dissertation. Beijing, China: University of Science and Technology Beijing. Department of Automation, 2006 (in Chinese) (袁 立.人耳识别中若干关键问题的研究.博士学位论文.北京:北京科技大学.自动化系, 2006)
[15]  Seung H S, Daniel D L. The Manifold Ways of Perception. Science, 2000, 290(5500): 2268-2269
[16]  Zhou Zhihua, Wang Jue. Machine Learning and Applications 2007. Beijing, China: Tsinghua University Press, 2007 (in Chinese) (周志华,王 珏.机器学习及其应用2007.北京:清华大学出版社, 2007)
[17]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[18]  Saul L K, Roweis S T. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research, 2003, 4(2): 119-155
[19]  Yin Junsong, Hu Dewen, Zhou Zongtan. Growing Locally Linear Embedding for Manifold Learning. Journal of Pattern Recognition Research, 2007, 2(1): 1-16
[20]  Varini C, Degenhard A, Nattkemper T W. ISOLLE: LLE with Geodesic Distance. Neurocomputing, 2006, 69(13/14/15): 1768-1771
[21]  Yang Fengzhao. The Research on a Few Key Issues in High Dimensional Data Mining. Ph.D Dissertation. Shanghai, China: Fudan University. Department of Computer and Information Technology, 2003 (in Chinese) (杨风召.高维数据挖掘中若干关键问题的研究. 博士学位论文.上海: 复旦大学.计算机与信息技术系, 2003)
[22]  Yang Fengzhao, Zhu Yangyong. An Efficient Method for Similarity Search on Quantitative Transaction Data. Journal of Computer Research and Development, 2004, 41(2): 361-368 (in Chinese) (杨风召,朱扬勇.一种有效的量化交易数据相似性搜索方法. 计算机研究与发展, 2004, 41(2): 361-368)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133