全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图熵的社会网络演化分析*

, PP. 360-365

Keywords: 社会网络,邮件网络,图熵,熵参与度,结点识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过图熵测度来描述在网络演化过程中网络的有序性,并在安然数据集上得出全局属性和局部属性在网络演化中有序性的不同趋势,这体现社会网络的一个主要特征,即多尺度上的不一致性.然后通过熵参与度来识别网络中的重要结点.最后,从理论上解释全局属性和局部属性在有序性上网络演化呈现不同趋势的原因.

References

[1]  Watts D J, Strogatz S H. Collective Dynamics of Small-World Networks. Nature, 1998, 393: 440-442
[2]  Barabasi A L, Albert R. Emergence of Scaling in Random Networks. Science, 1999, 286(5439): 509-512
[3]  Guimera R, Danon L, Dl'az-Guilera A, et al. Self-Similar Community Structure in a Network of Human Interactions [EB/OL]. [2003-04-30]. http://amaral.northwestern.edu/Publications/Papers/roger pro3a.pdf
[4]  Newman M E J, Forrest S, Balthrop J. Email Networks and the Spread of Computer Viruses [EB/OL]. [2002-09-10]. http://www.cs.unm.edu/~immsec/publications/Email%20Networks%20and%20the%20Spread%20of%20Computer%20Viruses.pdf
[5]  Boykin P O, Roychowdhury V P. Personal Email Networks: An Effective. IEEE Computer, 2002, 38(4): 61-68
[6]  Ebel H, Mielsch L I, Borbholdt S. Scale-Free Topology of Email Networks [EB/OL]. [2002-09-30]. http://www.itp.uni-bremen.de/complex/preo35/03.pdf
[7]  Nieminen U J. On the Centrality in a Directed Graph. Social Science Research, 1973, 2: 371-378
[8]  Freeman L C. Centrality in Social Networks: Conceptual Clarification. Social Networks, 1979, 1: 215-239
[9]  Albert R, Barabasi A L. Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 2002, 74(1): 47-97
[10]  Dorogovtsev S N, Mendes J F F. Evolution of Networks. Advances in Physics, 2002, 51(4): 1079-1187
[11]  Barabasi A L, Jeonga H, Neda Z, et al. Evolution of the Social Network of Scientific Collaborations. Physica A: Statistical and Theoretical Physics, 2002, 311(3): 590-614
[12]  Newman M E J. Assortative Mixing in Networks. Physical Review Letters, 2002, 89(20): 208-212
[13]  Enron Email Database [DB/OL]. [2007-11-02]. http://bailando.sims.berkeley.edu/enron/enron.sql.gz
[14]  Shetty J, Adibi J. Discovering Important Nodes through Graph Entropy: The Case of Enron Email Database // Proc of the 3rd International Workshop on Link Discovery. Chicago, USA, 2005: 74-81
[15]  Volchenkov D, Blanchard P. Discovering Important Nodes through Graph Entropy Encoded in Urban Space Syntax [EB/OL]. [2007-09-27]. http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.4415v1.pdf
[16]  Prigogine I. From Being to Becoming. New York, USA: Freeman, 2007
[17]  Wang Wenxu, Wang Binghong, Hu Bo, et al. General Dynamics of Topology and Traffic on Weighted Technological Networks [EB/OL]. [2005-05-12]. http://www.sklse.org/whucn/resource/WangBH.pdf
[18]  Barabasi A L, Albert R, Jeong H. Mean-Field Theory for Scale-Free Random Networks. Physica A: Statistical and Theoretical Physics, 1999, 272: 173-187
[19]  Goh K I, Kahng B, Kim D. Universal Behavior of Load Distribution in Scale-Free Networks [EB/OL]. [2003-10-29]. http://arxiv.org/PS_cache/cond-mat/pdf/0304/0304314v3.pdf
[20]  Goh K I, Oh E, Kahng B, et al. Betweeness Centrality Correlation in Social Networks [EB/OL]. [2003-02-01]. http://arxiv.org/PS_cache/Cond-mat/pdf/0210/0210224v1.pdf
[21]  Li Wenbin, Zhong Ning, Liu Jiming, et al. Perspective of Applying the Global Email Network // Proc of the IEEE/WIC/ACM International Conference on Web Intelligence. Hongkong, China, 2006: 117-120
[22]  Wu Fang, Huberman B A, Adamic L A, et al. Information Flow in Social Groups. Physica A: Statistical and Theoretical Physis, 2004, 337(1/2): 327-335
[23]  Boccaletti S, Latora V, Moreno Y, et al. Complex Networks: Structure and Dynamics. Physics Reports, 2006, 424(4/5): 175-308
[24]  Berger-Wolf T Y, Saia J. A Framework for Analysis of Dynamic Social Networks // Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006: 523-528
[25]  Carley K. Dynamic Network Analysis // Proc of the NRC Workshop on Social Network Modeling and Analysis. Wanshington, USA, 2003: 133-145
[26]  Barabasi A L. The Origin of Bursts and Heavy Tails in Human Dynamics. Nature, 2005, 435: 207-211
[27]  Skyrms B, Pemantle R. A Dynamic Model of Social Network Formation [EB/OL]. [2000-05-09]. http://www.pnas.org/content/97/16/9340.full.pdf
[28]  Vazquez A, Oliveira J G, Barabasi A L. The Inhomogeneous Evolution of Subgraphs and Cycles in Complex Networks. Physical Review E: Statistical, Nonlinear and Soft Matter Physics, 2005, 71(2): 025103
[29]  Holme P, Newman M E J. Nonequilibrium Phase Transition in the Coevolution of Networks and Opinions. Physical Review E: Statistical, Nonlinear and Soft Matter Physics, 2006, 74(5): 056108
[30]  de Menezes M A, Barabási A L. Fluctuations in Network Dynamics. Physical Review Letters, 2004, 92(2): 028701
[31]  Leicht E A, Clarkson G, Shedden K, et al. Large-Scale Structure of Time Evolving Citation Networks. The European Physical Journal B: Condensed Matter and Complex Systems, 2007, 59(1): 75-83

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133