全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Log-Gabor滤波与黎曼流形学习的图像识别算法*

DOI: 10.16451/j.cnki.issn1003-6059.201510010, PP. 946-952

Keywords: 黎曼流形学习,图像识别,Log-Gabor,测地线距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

在图像识别的研究中,黎曼流形学习不能有效消除图像中的冗余信息.基于上述原因,文中提出基于Log-Gabor滤波与黎曼流形学习的图像识别算法.首先使用Log-Gabor滤波器处理图像,获得维数较高的Log-Gabor图像特征,然后使用黎曼流形学习降维图像特征.研究表明,Log-Gabor滤波与黎曼流形学习的融合算法符合人类视觉感知的过程.文中算法对于光照、角度变化具有较好的鲁棒性,在多个标准数据库上的仿真实验验证文中算法的有效性.

References

[1]  [1] Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52
[2]  [2] Balakrishnama S, Ganapathiraju A. Linear Discriminant Analysis-A Brief Tutorial[EB/OL]. [2014-08-30]. http://www.music.mcgill.ca/~ich/classes/mumt611_07/classifiers/lda_theory.pdf[3] Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323[4] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326[5] Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396[6] He X F, Niyogi X. Locality Preserving Projections[EB/OL]. [2014-08-30]. http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2003_AA20.pdf[7] Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. Journal of Shanghai University: English Edition, 2004, 8(4): 406-424
[3]  [8] Brun A, Westin C F, Herberthson M, et al. Fast Manifold Learning Based on Riemannian Normal Coordinates // Proc of the 14th Scandinavian Conference on Image Analysis. Joensuu, Finland, 2005: 920-929[9] Lin T, Zha H B. Riemannian Manifold Learning. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(5): 796-809[10] Zhang J P, Shen C, Feng J F. Classification with the Hybrid of Manifold Learning and Gabor Wavelet // Proc of the 3rd International Symposium on Neural Networks. Chengdu, China, 2006, I: 1346-1351[11] Zhang Z L, Yang F, Tan W A, et al. Gabor FeatureBased Face Recognition Using Supervised Locality Preserving Projection. Signal Processing, 2007, 87(10): 2473-2483[12] Wang Q J, Zhang R B. Face Recognition Based on LogGabor and Orthogonal IsoProjection. Computer Science, 2011, 38(2): 274-276, 295 (in Chinese)
[4]  (王庆军,张汝波.基于 LogGabor 和正交等度规映射的人脸识别.计算机科学, 2011, 38(2): 274-276, 295)[13] Field D J. Relations between the Statistics of Natural Images and the Response Properties of Cortical Cells. Journal of the Optical Society of America A: Optics Image Science and Vision, 1987, 4(12): 2379-2394[14] Lin G J, Xie M. Face Recognition Based on Riemannian Manifold Learning // Proc of the International Conference on Computational ProblemSolving. Chengdu, China, 2011: 55-59[15] Huang H, Li J W, Feng H L. Fusion of LogGabor Wavelet and Supervised Locality Preserving Projection for Face Recognition. Journal of ComputerAided Design & Computer Graphics, 2008, 20(10): 1332-1337 (in Chinese)
[5]  (黄 鸿,李见为,冯海亮.融合 LogGabor 小波和监督保局映射的人脸识别算法.计算机辅助设计与图形学学报, 2008, 20(10): 1332-1337)[16] Zhao L H, Yang C K, Pan F, et al. Face Recognition Based on Gabor with 2DPCA and PCA // Proc of the 24th Chinese Control and Decision Conference. Taiyuan, China, 2012: 2632-2635[17] Nazari S, Moin M S. Face Recognition Using Global and Local Gabor Features // Proc of the 21st Iranian Conference on Electrical Engineering. Mashhad, Iran, 2013. DOI: 10.1109/IranianCEE.2013.6599704[18] Tanaka K, Hotta S. Local Subspace Classifier with Gabor Filter Decomposition for Image Classification // Proc of the 2nd IAPR Asian Conference on Pattern Recognition. Naha, Japan, 2013: 823-827

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133