全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于互信息和分形维数相结合的选择性聚类融合算法研究*

, PP. 847-855

Keywords: 选择性聚类融合,分形维数,互信息,选择策略,共协矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统聚类融合算法不能消除劣质聚类成员的干扰,以及聚类准确性不高等问题,提出一种基于分形维数的选择性聚类融合算法.该算法实现增量式聚类,能够发现任意形状的聚类.通过基于互信息计算权值的选择策略,选取部分优质聚类成员,再利用加权共协矩阵实现融合,获得最终的聚类结果.实验证明,与传统聚类融合算法相比,该算法提高了聚类质量,具有较好的扩展性.

References

[1]  Fern X L Z, Lin W. Cluster Ensemble Selection. Statistical Analysis and Data Mining, 2008, 1(3): 128-141
[2]  Azimi J, Fern X L. Adaptive Cluster Ensemble Selection // Proc of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 992-997
[3]  Hong Y, Kwong S, Wang H L, et al. Resampling-Based Selective Clustering Ensembles. Patten Recognition Letters, 2009, 30(3): 298-305
[4]  Hadjitodorov S T, Kuncheva L I, Todorova L P. Moderate Diversity for Better Cluster Ensembles. Information Fusion, 2006, 7(3): 264-275
[5]  Ni Z W, Ni L P, Liu H T, et al. Dynamic Data Mining. Beijing, China: Science Press, 2010 (in Chinese) (倪志伟,倪丽萍,刘慧婷,等.动态数据挖掘.北京:科学出版社, 2010)
[6]  Yang L Y, Wang W Y. Clustering Ensemble Approaches: An Overview. Computer Application Research, 2005, (12): 8-10,14 (in Chinese) (阳琳赟,王文渊.聚类融合方法综述.计算机应用研究, 2005, (12): 8-10,14)
[7]  Jiang S Y. Cluster Fusion Algorithm Based on Majority Voting Mechanism. Journal of Chinese Computer Systems, 2007, 28(2): 306-309 (in Chinese) (蒋盛益.基于投票机制的融合聚类算法.小型微型计算机系统, 2007, 28(2): 306-309)
[8]  Zou Y Q, Li G H, Zhao Z Y. New Clustering Algorithm Based on Combination of Genetic Algorithm and Ant Colony Algorithm. Science Technology and Engineering, 2006, 6(23): 4700-4704,4713 (in Chinese) (邹远强,李国徽,赵梓屹.基于遗传和蚁群算法融合的聚类新方法.科学技术与工程, 2006, 6(23): 4700-4704,4713)
[9]  Zhou Z H, Tang W. Clusterer Ensemble. Knowledge Based Systems, 2006, 19(1): 77-83
[10]  Li T, Ding C. Weighted Consensus Clustering [EB/OL]. [2013-06-11]. http://users.cis.fiu.edu/~taoli/tenure/dm08_72_li.pdf
[11]  Zhang Z Y, Li T, Ding C, et al. Binary Matrix Factorization for Analyzing Gene Expression Data. Data Mining and Knowledge Discovery, 2010, 20(1): 28-52
[12]  Xu S, Lu Z M, Gu G C. Spectral Clustering Algorithms for Document Cluster Ensemble Problem. Journal on Communications, 2010, 31(6): 58-66 (in Chinese)(徐 森,卢志茂,顾国昌.使用谱聚类算法解决文本聚类集成问题.通信学报,2010, 31(6): 58-66)
[13]  Tang W, Zhou Z H. Bagging-Based Selective Cluster Ensemble. Journal of Software, 2005, 16(4): 496-502 (in Chinese)(唐 伟,周志华.基于Bagging的选择性聚类集成.软件学报, 2005, 16(4): 496-502)
[14]  Zhang Z, Liang Y Q, Zhang X L. Community Mining in Dynamic Complex Network: Selective Clustering Fusion Algorithm. Computer & Digital Engineering, 2013, 41(3): 388-390 (in Chinese)(张 震,梁永全,张行林.动态复杂网络社区挖掘—选择性聚类融合算法.计算机与数字工程, 2013, 41(3): 388-390)
[15]  Fan X P, Sheng R F, Liao Z F, et al. Selective and Weighted Clustering Fusion Algorithm. Computer Engineering and Applications, 2012, 48(22): 195-200 (in Chinese)(樊晓平,盛荣芬,廖志芳,等.一种选择性加权聚类融合算法.计算机工程与应用, 2012, 48(22): 195-200)
[16]  Kong Z Z, Cai Z X. Sub-grouping and Selecting Method of Cluster Fusion. Control and Decision, 2012, 27(3): 369-373 (in Chinese)(孔志周,蔡自兴.分组选择聚类融合算法.控制与决策, 2012,27(3): 369-373)
[17]  Barbará D, Chen P. Using the Fractal Dimension to Cluster Datasets // Proc of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA, 2000: 260-264
[18]  Traina Jr C, Traina A J M, Faloutsos C. Distance Exponent: A New Concept for Selectivity Estimation in Metric Trees // Proc of the 16th IEEE International Conference on Data Engineering. San Diego, USA, 2000: 195-209
[19]  Qi X J. Research of Clustering Technique Based on Self-similarity and Grid over Data Stream. Master Dissertation. Qinhuangdao, China: Yanshan University, 2011 (in Chinese)(齐雪娇.基于分形自相似性和网格的数据流聚类技术研究.硕士学位论文.秦皇岛:燕山大学, 2011)
[20]  Fred A L N, Jain A K. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850
[21]  Kuncheva L I, Hadjitodorov S T. Using Diversity in Cluster Ensemble // Proc of the IEEE International Conference on System, Man and Cybernetics. Hague, Netherlands, 2004, II: 1214-1219
[22]  Topchy A, Jain A K, Punch W. Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866-1881

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133