全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多目标0/1背包问题MOEA求解中的修复策略*

, PP. 519-526

Keywords: 多目标进化算法(MOEA),多目标0/1背包问题(MOKP),进化多目标优化,加权修复策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

多目标进化算法在求解多目标0/1背包问题时常使用修复策略来满足容量约束.文中更全面地考虑物品对各个背包的不同影响,提出两种加权修复策略,分别基于背包容量和容量约束违反程度,并应用于经典算法SPEA2中.在9个标准MOKP测试实例上的实验结果表明,采用该修复策略的SPEA2算法能更有效地收敛到Pareto最优前沿.

References

[1]  Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chicester, UK: John Wiley & Sons, 2001
[2]  Xie Tao, Chen Huowang, Kang Lishan. Evolutionary Algorithms of Multi-Objective Optimization Problems. Chinese Journal of Computers, 2003, 26(8): 997-1003 (in Chinese) (谢 涛,陈火旺,康立山.多目标优化的演化算法.计算机学报, 2003, 26(8): 997-1003)
[3]  Zhao Shuguang, Jiao Licheng, Wang Yuping, et al. Uniform Design Based Multi-Objective Adaptive Genetic Algorithm and Its Application in Evolutionary Design of Analog Circuits. Acta Electronica Sinica, 2004, 32(10): 1723-1725 (in Chinese) (赵曙光,焦李成,王宇平,等.基于均匀设计的多目标自适应遗传算法及应用.电子学报, 2004, 32(10): 1723-1725)
[4]  Coello C C A. Evolutionary Multi-Objective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36
[5]  Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, 103, Zurich, Switzerland: Swiss Federal Institute of Technology. Computer Engineering and Networks Laboratory (TIK), 2001
[6]  Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197
[7]  Knowles J D, Corne D W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 2000, 8(2): 149-172
[8]  Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271
[9]  Chu P C, Beasley J E. A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heuristics, 1998, 4(1): 63-86
[10]  Knowles J D, Corne D W. M-PAES: A Memetic Algorithm for Multiobjective Optimization // Proc of the Congress on Evolutionary Computation. La Jolla, USA, 2000, Ⅰ: 325-332
[11]  Ishibuchi H, Kaige S. An Empirical Study on the Effect of Mating Restriction on the Search Ability of EM0 Algorithms // Proc of the 2nd International Conference on Evolutionary Multi-Criterion Optimization. Faro, Portugal, 2003: 433-447
[12]  Jaszkiewicz A. On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment. IEEE Trans on Evolutionary Computation, 2002, 6(4): 402-412
[13]  Ishibuchi H, Kaige S. Effects of Repair Procedures on the Performance of EMO Algorithms for Multiobjective 0/1 Knapsack Problems // Proc of the Congress on Evolutionary Computation. Canberra, Australia, 2003, Ⅳ: 2254-2261
[14]  Zitzler E, Thiele L, Laumanns M, et al. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Trans on Evolutionary Computation, 2003, 7(2): 117-132
[15]  Fieldsend J E, Everson R M, Singh S. Using Unconstrained Elite Archives for Multiobjective Optimization Evolutionary Computation. IEEE Trans on Evolutionary Computation, 2003, 7(3): 305-323

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133