全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于伪分类超平面的线性可分几何判定方法及应用

, PP. 60-69

Keywords: 线性可分,伪分类超平面,空间映射,分类复杂度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对模式分类中线性可分的问题,文中将模式看作是欧氏空间中的点,研究欧氏空间中点与面的关系等解析几何性质,在一般的分类超平面概念上定义伪分类超平面.根据线性可分等价性,在需降维时进行空间映射.研究根据数据寻找伪分类超平面,给出几何意义明显的线性可分判断方法,在该方法的基础上给出一种分类复杂度的度量方法.实验结果表明,该方法较好地体现数据的分类复杂度。

References

[1]  Dura R O, Hart P E, Stork D G. Pattern Classification. New York, USA: Wiley InterScience, 2000
[2]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[3]  Lax P D. Functional Analysis. New York, USA: Wiley InterScience, 2002
[4]  Megiddo N. On the Complexity of Polyhedral Separability. Discrete & Computational Geometry, 1988, 3(1): 325-337
[5]  Tajine M, Elizondo D. New Methods for Testing Linear Separability. Neurocomputing, 2002, 47(1/2/3/4): 161-188
[6]  Ben-Israel A, Levin Y. The Geometry of Linear Separability in Data Sets. Linear Algebra and its Applications, 2006, 416(1): 75-87
[7]  Chen Degang, He Qiang, Wang Xizhao. On Linear Separability of Data Sets in Feature Space. Neurocomputing, 2007, 70(13/14/15): 2441-2448
[8]  Sun Y J. New Criteria for the Linear Binary Separability in the Euclidean Normed Space. The Open Cybernetics and Systemics Journal, 2008, 2: 101-105
[9]  Gabidullina Z R. A Linear Separability Criterion for Sets of Euclidean Space. Journal of Optimization Theory and Applications, 2013, 158(1): 145-171
[10]  Elizondo D. The Linear Separability Problem: Some Testing Methods. IEEE Trans on Neural Networks, 2006, 17(2): 330-344
[11]  Soliman M A, Abo-Bakr R M. Linearly and Quadratically Separable Classifiers Using Adaptive Approach. Journal of Computer Science and Technology, 2011, 26(5): 908-918
[12]  Aleksandrow A D, Kolmogorov A N, Lavrentev M A. Mathematics: Its Content, Methods, and Meaning. New York, USA: Dover Publications Inc., 1999
[13]  Elizondo D A, Rirkenhead R, Gamez M, et al. Linear Separability and Classification Complexity. Expert Systems with Applications, 2012, 39(9): 7796-7807
[14]  Schlkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, USA: The MIT Press, 2001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133