全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究

, PP. 70-76

Keywords: 模式识别,稀疏表示,遮挡图像,递推残差,形态学操作

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对如何在未知类别的情况下自动检测出遮挡区域,然后在克服遮挡影响的基础上提高识别算法的鲁棒性问题,提出基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法.该算法首先将待测样本分为上下两部分,并分别用对应块的训练样本进行稀疏表示,找出稀疏度更高的块及对应的稀疏解,并将更稀疏前N个解推广到另一个块中,重构测试样本.然后根据重构测试样本与原测试样本的残差推测遮挡像素.考虑到遮挡区域的连续性,利用形态学操作对推测的遮挡区域进行规则化处理并得到加权矩阵.最后利用加权矩阵对测试样本和训练样本进行整体加权归一化,再利用全局稀疏表示进行最终的分类判决.在AR、YaleB及MNIST上的遮挡仿真实验证明该方法不但可大致确定遮挡区域,还可提高遮挡图像识别的性能。

References

[1]  Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
[2]  Zhang Lei, Yang Meng, Feng Xiangchu. Sparse Representation or Collaborative Representation: Which Helps Face Recognition? // Proc of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 471-478
[3]  Xu Yong, Zuo Wangmeng, Fan Zizhu. Supervised Sparse Representation Method with a Heuristic Strategy and Face Recognition Experiments. Neurocomputing, 2012, 79(1): 125-131
[4]  Wagner A,Wright J, Ganesh A, et al.Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 597-604
[5]  Yang Meng, Zhang Lei, Zhang D. Efficient Misalignment-Robust Representation for Real-Time Face Recognition // Proc of the 12th European Conference on Computer Vision. Firenze, Italy, 2012: 850-863
[6]  Yang Meng, Zhang Lei. Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary // Proc of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010: 448-461
[7]  Chen C F, Wei C P, Wang Y C F. Low-Rank Matrix Recovery with Structural Incoherence for Robust Face Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 2618-2625
[8]  Chen Zhaohua, Xu Tingrong , Han Zhiyuan. Occluded Face Recognition Based on the Improved SVM and Block Weighted LBP // Proc of the International Conference on Image Analysis and Signal Processing. Hangzhou, China, 2011: 118-122
[9]  Yang Meng, Zhang D, Jian Yang, et al. Robust Sparse Coding for Face Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011: 625-632
[10]  Lai Jian, Jiang Xudong. Modular Weighted Global Sparse Representation for Robust Face Recognition. IEEE Signal Processing Letters, 2012, 19(9): 571-574
[11]  Yuk J S C, Wong K Y K, Chung R H Y. A Multi-Level Supporting Scheme for Face Recognition under Partial Occlusions and Disguise // Proc of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand, 2010: 690-701
[12]  Andres A M, Padovani S, Tepper M, et al. Randomized Face Recognition on Partially Occluded Images // Proc of the 17th Iberoamerican Congress on Pattern Recognition. Buenos Aires, Argentina, 2012: 90-97
[13]  Venkata I, Khadera A T, Subramaniana K G, et al. Recognizing Occluded Faces by Exploiting Psychophysically Inspired Similarity Maps. Pattern Recognition Letters, 2013, 34(8): 903-911
[14]  Li Xiaoxin, Dai Daoqing, Zhang Xiaofei, et al. Face Recognition with Continuous Occlusion Using Partially Iteratively Reweighted Sparse Coding // Proc of the 1st Asian Conference on Pattern Recognition. Beijing, China, 2011: 293-297
[15]  Wang Zhiming, Tao Jianhua. Face Occlusion Detection and Reconstruction. Journal of Computer Research and Development, 2010, 47(1): 16-22 (in Chinese)(王志明,陶建华.人脸遮挡区域检测与重建.计算机研究与发展, 2010, 47(1): 16-22)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133