全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Logistic回归模型的时变结构基因调控网络构建*

, PP. 584-550

Keywords: 基因调控网络,互信息,l1-正则化,Logistic回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,由大多数基因调控网络的重构方法推导出的网络结构是静态的,即不随时间改变.但在细胞周期或一个有机体的不同生长阶段,调控网络的拓扑结构会发生显著变化.这为深入了解基因调控的时空机制带来困难.因此,文中提出一种基于时延互信息和核权重l1正则化Logistic回归模型学习时变结构基因调控网络的算法.将其应用于两种生物情景数据:黑腹果蝇在不同阶段的肌肉发育和酿酒酵母苯菌灵中毒后的反应.实验结果显示,该方法能反映不同细胞状态对基因间相互作用的影响,有效获取基因调控网络随时间变化的动态效应.

References

[1]  Hecker M, Lambeck S, Toepfer S, et al. Gene Regulatory Network Inference: Data Integration in Dynamic Models-A Review. BioSystems, 2009, 96(1): 86-103
[2]  Kim H, Lee J K, Park T. Boolean Networks Using the Chi-Square Test for Inferring Large-Scale Gene Regulatory Networks. BMC Bioinformatics, 2007.DOI:10.1186/1471-2105-8-37
[3]  Zhou S H, Lafferty J, Wasserman L. Time Varying Undirected Graphs. Machine Learning, 2010, 80(2/3): 295-319
[4]  Lèbre S, Becq J, Devaux F, et al. Statistical Inference of the Time-Varying Structure of Gene-Regulation Networks. BMC Systems Biology, 2010.DOI:10.1186/1752-0509-4-130
[5]  Grzegorczy M, Husmeier D, Edwards K D, et al. Modelling Non-Stationary Gene Regulatory Processes with a Non-homogeneous Bayesian Network and the Allocation Sampler. Bioinformatics, 2008, 24(18): 2071-2078
[6]  Robinson J W, Hartemink A J. Learning Non-Stationary Dynamic Bayesian Networks. Journal of Machine Learning Research, 2010, 11: 3647-3680
[7]  Luscombe N M, Babu M M, Yu H, et al. Genomic Analysis of Regulatory Network Dynamics Reveals Large Topological Changes. Nature, 2004, 431: 308-312
[8]  Más P. Circadian Clock Function in Arabidopsis Thaliana: Time beyond Transcription. Trends in Cell Biology, 2008, 18(6): 273-281
[9]  Jia Y, Huan J. Constructing Non-stationary Dynamic Bayesian Networks with a Flexible Lag Choosing Mechanism. BMC Bioinformatics, 2010, 11(Supplement 6): S27
[10]  Ahmed A, Xing E P. Recovering Time-Varying Networks of Dependencies in Social and Biological Studies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(29): 11878-11883
[11]  Song L, Kolar M, Xing E P. KELLER: Estimating Time-Varying Interactions between Genes. Bioinformatics, 2009, 25(12): i128-i136
[12]  Zou M, Conzen S D. A New Dynamic Bayesian Network (DBN) Approach for Identifying Gene Regulatory Networks from Time Course Microarray Data. Bioinformatics, 2005, 21(1): 71-79
[13]  Sacchi L, Bellazzi R, Porreca R, et al. Precedence Temporal Networks from Gene Expression Data // Proc of the 18th IEEE Symposium on Computer-Based Medical Systems. Dublin, Ireland, 2005: 109-114
[14]  Xing Z Z, Wu D. Modeling Multiple Time Units Delayed Gene Regulatory Network Using Dynamic Bayesian Network // Proc of the 6th IEEE International Conference on Data Mining Workshops. Hong Kong, China, 2006: 190-195
[15]  Cover T M, Thomas J A. Elements of Information Theory. New York, USA: Wiley-Interscience, 1991
[16]  Chaitanker V, Ghosh P, Perkins E, et al. Time Lagged Information Theoretic Approaches to the Reverse Engineering of Gene Regulatory Networks. BMC Bioinformatics, 2010, 11(Supplement 6): S19
[17]  Arbeitman M N, Furlong E E M, Imam F, et al. Gene Expression during the Life Cycle of Drosophila Melanogaster. Science, 2002, 297(5590): 2270-2275
[18]  Guo F, Hanneke S, Fu W J, et al. Recovering Temporally Rewiring Networks: A Model-Based Approach // Proc of the 24th International Conference on Machine Learning. Corvallis, USA, 2007: 321-328
[19]  Zhao W J, Serpedin E, Dougherty E R. Inferring Gene Regulatory Networks from Time Series Data Using the Minimum Description Length Principle. Bioinformatics, 2006, 22(17): 2129-2135
[20]  Duan H, Nguyen H T. Distinct Posttranscriptional Mechanisms Regulate the Activity of the Zn Finger Transcription Factor Lame Duck during Drosophila Myogenesis. Molecular and Cellular Biology, 2006, 26(4): 1414-1423
[21]  Cripps R M, Black B L, Zhao B, et al. The Myogenic Regulatory Gene Mef2 is a Direct Target for Transcriptional Activation by Twist during Drosophila Myogenesis. Genes & Development, 1998, 12(3): 422-434
[22]  Sandmann T, Jensen L J, Jakobsen J S, et al. A Temporal Map of Transcription Factor Activity: Mef2 Directly Regulates Target Genes at All Stages of Muscle Development. Developmental Cell, 2006, 10(6): 797-807
[23]  Elgar S J, Han J, Taylor M V. Mef2 Activity Levels Differentially Affect Gene Expression During Drosophila Muscle Development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3): 918-923
[24]  Lucau-Danila A, Lelandais G, Kozovska Z, et al. Early Expression of Yeast Genes Affected by Chemical Stress. Molecular and Cellular Biology, 2005, 25(5): 1860-1868
[25]  Salin H, Fardeau V, Piccini E, et al. Structure and Properties of Transcriptional Networks Driving Selenite Stress Response in Yeasts. BMC Genomics, 2008. DOI:10.1186/1471-2164-9-333
[26]  Abdulrehman D, Monteiro P T, Teixeira M C, et al. YESTRACT: Providing a Programmatic Access to Curated Transcriptional Regulatory Associations in Saccharomyces Cerevisiae through a Web Services Interface. Nucleic Acids Research, 2011, 39(Supplement 1): D136-D140

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133