Moore R E. Interval arithmetic and automatic error analysis in digital computing[M]. Starford: Stanford University Press, 1962: 1-35.
[2]
Box G E P, Jenkins G M, Reinsel G C. Time series analysis: Forecasting and control[M]. 4th ed. New York: JohnWiley & Sons, 2008: 21-224.
[3]
Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation[J]. Econometrica, 1982, 50(4): 987-1007.
[4]
Roque A M, Mate C, Arroyo J, et al. iMLP: Applying multi-layer perceptrons to interval-valued data[J]. Neural Processing Letters, 2007, 25(2): 157-169.
(Cao Y P, Tian X M. Nonlinear system fault prognosis based on SVM and Kalman predictor[J]. Control and Decision, 2009, 24(3): 477-480.)
[7]
Arroyo J, Maté C. Introducing interval time series: Accuracy measures[C]. Proc in Computational Statistics. Heidelberg: Springer, 2006: 1139-1146.
[8]
Zemouri R, Gouriveau R, Zerhouni N. Defining and applying prediction performance metrics on a recurrent NARX time series model[J]. Neurocomputing, 2010, 73(13/14/15): 2506-2521.
[9]
Ma Q L, Zheng Q L, Peng H, et al. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network[J]. Chinese Physics B, 2008, 17(2): 536-542.
(Li S, Liu L J, Xie Y L. Chaotic prediction for short-term traffic flow of optimized BP neural network based on genetic algorithm[J]. Control and Decision, 2011, 26(10): 1581-1585.)
[12]
Zhang G. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50(1/2/3): 159-175.
[13]
Araujo R, Ferreira T A E. An intelligent hybrid morphological-rank-linear method for financial time series prediction[J]. Neurocomputing, 2009, 72(10/11/12): 2507-2524.
[14]
(Yang Z M, Yue J G, Wang X B, et al. Prediction of urban rail transit power consumption based on regression model[J]. Urban Mass Transit, 2010, 13(12): 22-25.)
[15]
Omer F D. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 586-594.
(Xu H L, Wu B L, Jiang S S. On forecasting efficiency evaluation for interval time series[J]. The J of Quantitative & Technical Economics, 2008, 12(1): 133-140.)
[18]
Kaastra I, Boyd M. Designing a neural network for forecasting financial and economic time-series[J]. Neurocomputing, 1996, 10(3): 215-236.