全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部搜索的人工蜂群算法

DOI: 10.13195/j.kzyjc.2012.1301, PP. 123-128

Keywords: 人工蜂群,局部搜索算子,排序选择,函数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对人工蜂群算法存在收敛速度慢、易早熟等缺点,提出一种改进的人工蜂群算法.利用随机动态局部搜索算子对当前的最优蜜源进行局部搜索,以加快算法的收敛速度;同时,采用基于排序的选择概率代替直接依赖适应度的选择概率,维持种群的多样性,以避免算法出现早熟收敛.对标准测试函数的仿真实验结果表明,所提出的算法具有较快的收敛速度和较高的求解精度.

References

[1]  Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Engineering Faculty Computer Engineering Department, Ereiyes University, 2005.
[2]  Karaboga D, Akay B. Artificial bee colony(abc) algorithm on training artificial neural networks[C]. 2007 IEEE 15th Signal Proc and Communications Applications. Eskisehir: IEEE, 2007: 1-4.
[3]  Karaboga D, Ozturk C. Fuzzy clustering with artificial bee colony algorithm[J]. Scientific Research and Essays, 2010, 5(14): 1899-1902.
[4]  Ozturk C, Karaboga D, Gorkemli B. Probabilistic dynamic deployment of wireless sensor networksby artificial bee colony algorithm[J]. Sensors, 2011, 11(6): 6056-6065.
[5]  罗钧, 李研. 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25(12): 1913-1916.
[6]  (Luo J, Li Y. Artificial bee colony algorithm with chaotic-search strategy[J]. Control and Decision, 2010, 25(12): 1913-1916.)
[7]  Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[8]  El-Abd M. A hybrid ABC-SPSO algorithm for continuous function optimization[C]. IEEE Symposium on Swarm Intelligence. Paris: IEEE, 2011: 1-6.
[9]  Basturk B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(1): 120-142.
[10]  Hamzacebi C, Kutay F. Continuous functions minimization by dynamic random search technique[J]. Applied Mathematical Modelling, 2007, 31(10): 2189-2198.
[11]  高卫峰, 刘三阳. 一种高效粒子群优化算法[J]. 控制与决策, 2011, 26(8): 1158-1162.
[12]  (Gao W F, Liu S Y. An efficient particle swarm optimization[J]. Control and Decision, 2011, 26(8): 1158-1162.)
[13]  Hamzacebi C. Improving genetic algorithms’ performance by local search for continuous function optimization[J]. Applied Mathematics and Computation, 2008, 196(1): 309-317.
[14]  Bao L, Zeng J C. Comparison and analysis of the selection mechanism in the artificial bee colony algorithm[C]. The 9th Int Conf on Hybrid Intelligent Systems. Shenyang: IEEE Press, 2009: 411-416.
[15]  Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
[16]  Karaboga D, Basturk D, On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
[17]  GaoWF, Liu S Y. Improved artificial bee colony algorithm for global optimization[J]. Information Processing Letters, 2011, 111(17): 871-882.
[18]  Alatas B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications, 2010, 37(8): 5682-5687.
[19]  Kang F, Li J J, Ma Z Y. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J]. Information Sciences, 2011, 181(16): 3508-3531.
[20]  Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Trans on Systems, Man, and Cybernetics, 2009, 39(6): 1362-1381.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133