全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性离散时间系统带ε误差限的自适应动态规划

, PP. 1586-1590

Keywords: 最优控制,离散时间系统,自适应动态规划,神经网络,??,误差限

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了获得非线性离散时间系统的最优控制策略,基于自适应动态规划的原理,提出了一种带误差限的自适应动态规划方法.对于一个任意的状态,用一个有限长度的控制序列近似最优控制序列,使性能指标与最优性能指标的误差在一个较小的范围内.选取一个非线性离散时间系统对算法的性能进行数值实验,结果验证了该算法的有效性,用较少的计算代价获得了近似最优的控制策略.

References

[1]  P. J. Werbos. A Menu of Designs for Reinforcement Learning Over Time, in Neural Networks for Control[M], W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1990: 67-95. [2] P. J. Werbos. Approximate Dynamic Programming for Real-time Control and Neural Modeling, in Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches[M](Chapter 13), Edited by D. A. White and D. A. Sofge, New York, NY: Van Nostrand Reinhold, 1992: 493-525. [3] Danil V. Prokhorov, Donald C. Wunsch. Adaptive Critic Designs[J]. IEEE Transactions on neural networks, 1997, 8(5): 997-1007. [4] George G. Lendaris,Christian Paintz. Training Strategies for Critic and Action Neural Networks in Dual Heuristic Programming Method[C]. Proceedings of the 1997 IEEE International Conference on Neural Networks. Houston, TX, 1997: 712-717. [5] Jennie Si,Yu-Tsung Wang. On-Line Learning Control by Association and Reinforcement[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 264-276. [6] Derong Liu,Xiaoxu Xiong,Yi Zhang. Action-Dependent Adaptive Critic Designs[C]. Proceedings of the 2001 IEEE International Conference on Neural Networks. Washington, D.C., 2001: 990–995. [7] Derong Liu, Ning Jin. ε-Adaptive Dynamic Programming for Discrete-Time Systems[C]. 2008 International Joint Conference on Neural Networks (IJCNN 2008). 2008: 1417-1424. [8] Murad Abu-Khalaf, Frank L. Lewis. Nearly Optimal Control Laws for Nonlinear Systems with Saturating Actuators Using a Neural Network HJB Approach[J]. Automatica 41, 2005: 779- 791. [9] Huaguang Zhang,Qinglai Wei,Yanhong Luo. A Novel Infinite-Time Optimal Tracking Control Scheme for a Class of Discrete-Time Nonlinear Systems via the Greedy HDP Iteration Algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2008, 38(4): 937-942. [10] Asma Al-Tamimi,Frank L. Lewis and Murad Abu-Khalaf. Discrete-Time Nonlinear HJB Solution Using Approximate Dynamic Programming: Convergence Proof[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2008, 38(4): 943-949.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133