全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于证据理论的模糊时间序列预测模型

, PP. 99-103

Keywords: 模糊理论,时间序列,证据理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析经典模糊时间序列预测模型的基础上,指出了传统的模型不能处理多因素的情形;然后分析并改进了证据理论中关于证据合成的方法,提出了基于证据理论的多因素模糊时间序列预测模型;最后用1997年~2006年10年间的上海股指数据对所提出的模型进行了实践检验,实验结果表明该模型是可行的,其预测效果优于所参照的预测模型.

References

[1]  Song Q, Chissom B S. Fuzzy time series and its models[J].Fuzzy Sets Syst, 1993, 54(3), 269-277. [2] Chen, S M. Forecasting enrollments based on fuzzy time series[J]. Fuzzy Sets and Systems, 1996(81), 311-319. [3] Ufuk Yolcu, Erol Egrioglu, Vedide R. Uslu, Murat A. Basaran, Cagdas H. Aladag. A new approach for determining the length of intervals for fuzzy time series[J].Applied Soft Computing, 2009, 9(2): 647-651. [4] Lee M H, Efendi R, Ismail Z. Modified Weighted for enrollment forecasting based on fuzzy time series[J].MATEMATIKA, 2009, 25(1): 67-78 [5] Huarng K H. Effective lengths of intervals to improve forecasting in fuzzy time series[J]. Fuzzy Sets and Systems,2001, 123(3): 387-394. [6] Huarng K H. Ratio-based lengths of intervals to improve fuzzy time series forecasting[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006,36(2): 328-340. [7] Cheng C H, Chen T L, Chiang C H. Trend-weighted fuzzy time-series model for TAIEX forecasting[J]. Lect. Notes Computer. Science, 2006, 4234(3): 469-477. [8] Yu H K. Weighted fuzzy time series model for TAIEX forecasting[J]. Physica A, 2005, 349(3-4), 609-624. [9] Wang N Y, Chen S M. Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series[J]. Expert Systems with Applications, 2009, 36: 2143-2154. [10] Huarng K H, Yu H K. A type 2 fuzzy time series model for stock index forecasting[J]. Physica A: Statistical Mechanics and its Applications, 2005, 353(1-4): 445-462. [11] Leu Y h, Lee C P, Jou Y Z. A distance-based fuzzy time series model for exchange rates forecasting[J]. Expert Systems with Applications, 2009, 36(4): 8107-8114. [12] Shafer G. A Mathematical Theory of Evidence[M]. Princeton University Press. Princeton, New Jeresy, 1976. [13] Dempster A P. New methods for reasoning towards posterior distributions based on sample data[J]. Annals of Mathematical Statistics. 1966, 37: 355–374. [14] Philippe Smets, Analyzing the combination of conflicting belief functions[J]. Information Fusion,2007, 8: 387–412 [15] Liu W. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence , 2006, 170: 909–924 [16] 龚本刚. 基于证据理论的不完全信息多属性决策方法研究[D]. 中国科学技术大学博士论文,2007年4月.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133