全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有时变时滞的不确定非完整系统的输出反馈镇定

DOI: 10.13195/j.kzyjc.2013.0794, PP. 1569-1575

Keywords: 非完整系统,时变时滞,反馈镇定,不确定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对一类含有状态时变时滞的不确定非完整系统,提出一种输出反馈镇定控制算法.通过应用不连续的输入-状态变换和缩放变换,将原始研究系统转换为更利于反馈控制器设计的新系统.基于此系统设计状态反馈控制律,通过构造状态观测器、利用必然等价原理给出理想的输出反馈镇定控制器.分析表明,所设计的控制器能够使得闭环系统的状态渐近趋于零.最后通过仿真实例表明了所提出控制策略的有效性.

References

[1]  梅凤翔. 非完整系统力学基础[M]. 北京: 北京工业学院出版社, 1985: 29-41.
[2]  (Mei F X. The basis of nonholonomic mechanical system[M]. Beijing: Beijing Institute of Technology Press, 1985: 29-41.)
[3]  Astolfi A. Discontinuous control of nonholonomic systems[J]. Systems and Control Letters, 1996, 27(1): 37-45.
[4]  Walsh G C, Bushnell L G. Stabilization of multiple input chained form control systems[J]. Systems and Control Letter, 1995, 25(3): 227-234.
[5]  Samson C. Time-varying feedback stabilization of a nonholonomic wheeled mobile robot[J]. Int J of Robotics Research, 1993, 12(1): 55-66.
[6]  De Wit C C, Berghuis H, Nijmeijer H. Practical stabilization of nonlinear systems in chained form[C]. Proc of the 33rd IEEE Conf on Decision and Control. Lake Buena Vista, 1994: 3475-3480.
[7]  Ge S S, Wang Zhu-ping, Lee T H. Adaptive stabilization of uncertain nonholonomic systems by state and output feedbacks[J]. Automatica, 2003, 39(8): 1451-1460.
[8]  Murray R M, Sastry S. Nonholonomic motion planning: Steering using sinusoids[J]. IEEE Trans on Automatic Control, 1993, 38(5): 700-716.
[9]  HuoW, Ge S S. Exponential stabilization of nonholonomic systems: An eni approach[J]. Int J of Control, 2001, 74(15): 1492-1500.
[10]  M’Closkey R T, Murray R M. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback[J]. IEEE Trans on Automatic Control, 1997, 42(5): 614-628.
[11]  Do K D, Pan J. Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts[J]. Systems and Contorl Letters, 2002, 46(3): 195-205.
[12]  Gao Fang-zheng, Yuan Fu-shun, Yao He-jun. Robust adaptive control for nonholonomic systems with nonlinear parameterization[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 3242-3250.
[13]  Zhang Zheng-qiang, Lu Jun-wei, Xu Sheng-yuan. Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays[J]. Int J of Robust and Nonlinear Control, 2012, 22(14): 1631-1646.
[14]  Zhang Zheng-qiang, Xu Sheng-yuan, Shen Hao. Reduced-
[15]  order observer-based output-feedback tracking control of nonlinear systems with state delay and disturbance[J]. Int J of Robust and Nonlinear Control, 2010, 20(15): 1723-1738.
[16]  Wu Yuan-yuan, Wu Yu-qiang. Robust stabilization of delayed nonholonomic systems with strong nonlinear drifts[J]. Nonlinear Analysis: Real World Applications, 2010, 11(5): 3620-3627.
[17]  Wu Yuan-yuan, Wu Yu-qiang. Robust stabilization for nonholonomic systems with state delay and nonlinear drifts[J]. J of Control Theory and Applications, 2011, 9(2): 256-260.
[18]  Gao Fang-zheng, Yuan Fu-shun, Yao He-jun. Robust stabilization of nonholonomic systems with time delays[C]. Proc of the 24th Chinese Control and Decision Conf. Taiyuan, 2012: 2111-2115.
[19]  Jiang Z P. Robust exponential regulation of nonholonomic systems with uncertainties[J]. Automatica, 2000, 36(2): 189-209.
[20]  Khalil H K. Nonlinear systems[M]. New Jersey: Prentice Hall, 2002: 145.
[21]  Liu Liang, Xie Xue-jun. Output-feedback stabilization for stochastic high-order nonlinear systems with time-varying delay[J]. Automatica, 2011, 47(12): 2772-2779.
[22]  Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M]. Berlin: Birkhauser, 2003: 11-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133