全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶离散灰色GM(1,1)幂模型及其应用

DOI: 10.13195/j.kzyjc.2014.0578, PP. 1264-1268

Keywords: 灰色幂模型,分数阶灰色模型,量子遗传算法,预测精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对GM(1,1)幂模型时间响应式由离散估计到连续预测所存在的固有误差,建立离散灰色GM(1,1)幂模型,并将该模型扩展为分数阶离散灰色GM(1,1)幂模型;以最小化平均相对误差为目标、参数之间的关系为约束条件,构建关于序列累加阶数和幂指数的优化模型,并运用量子遗传算法确定模型的最优累加阶数和幂指数.通过对高速公路地基沉降和中国高新技术产业R&D发展两个实例的预测结果表明,分数阶离散灰色GM(1,1)幂模型具有良好的建模精度.

References

[1]  Deng J L. Introduction of grey system[J]. J of Grey System, 1989, 1(1): 1-24.
[2]  刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 第5 版. 北京: 科学出版社, 2010: 176-179.
[3]  (Liu S F, Dang Y G, Fang Z G, et al. Grey system theory and its application[M]. 5th ed. Beijing: Science Press, 2010: 176-179.)
[4]  王正新, 党耀国, 刘思峰, 等. GM(1,1) 幂模型求解方法及其解的性质[J]. 系统工程与电子技术, 2009, 31(10): 2380-2383.
[5]  (Wang Z X, Dang Y G, Liu S F, et al. Solution of GM(1,1) power model and its properties[J]. Systems Engineering and Electronics, 2009, 31(10): 2380-2383.)
[6]  王丰效. 改进灰导数的GM(1,1) 幕模型[J]. 纯粹数学与应用数学, 2011, 27(2): 148-150.
[7]  (Wang F X. GM(1,1) power model of improvement grey derivative[J]. Pure and Applied Mathematics, 2011, 27(2): 148-150.)
[8]  李军亮, 肖新平, 廖锐全. 非等间隔GM(1,1) 幂模型及应用[J]. 系统工程理论与实践, 2010, 30(3): 490-495.
[9]  (Li J L, Xiao X P, Liao R Q. Non-equidistance GM(1,1) power and its application[J]. Systems Engineering-Theory& Practice, 2010, 30(3): 490-495.)
[10]  王正新, 党耀国, 刘思峰. GM(1,l) 幂模型的病态性[J]. 系统工程理论与实践, 2013, 33(7): 1859-1866.
[11]  (Wang Z X, Dang Y G, Liu S F. The morbidity of GM(1,1) power model[J]. Systems Engineering-Theory& Practice, 2013, 33(7): 1859-1866.)
[12]  王正新, 党耀国, 练郑伟. 无偏GM(1,1) 幂模型及其应用[J]. 中国管理科学, 2011, 19(4): 144-151.
[13]  (Wang Z X, Dang Y G, Lian Z W. Unbiased GM(1,1) power model and its application[J]. Chinese J of Management Science, 2011, 19(4): 144-151.)
[14]  王正新, 党耀国, 赵洁珏. 优化的GM(1,1) 幂模型及其应用[J]. 系统工程理论与实践, 2012, 32(9): 1973-1978.
[15]  (Wang Z X, Dang Y G, Zhao J J. Optimized GM(1,1) power model and its application[J]. Systems Engineering-Theory& Practice, 2012, 32(9): 1973-1978.)
[16]  王正新. 基于傅立叶级数的小样本振荡序列灰色预测方法[J]. 控制与决策, 2014, 29(2): 270-274.
[17]  (Wang Z X. Grey forecasting method for small sample oscillating sequences based on Fourier series[J]. Control and Decision, 2014, 29(2): 270-274.)
[18]  王正新. 振荡型GM(1,1) 幂模型及其应用[J]. 控制与决策, 2013, 28(10): 1459-1464.
[19]  (Wang Z X. Oscillating GM(1,1) power model and its application[J]. Control and Decision, 2013, 28(10): 1459-1464.)
[20]  钱吴永, 党耀国, 刘思峰. 含时间幂次项的灰色GM(1,1,????) 模型及其应用[J]. 系统工程理论与实践, 2012, 32(10): 2247-2252.
[21]  (Qian W Y, Dang Y G, Liu S F. Grey GM(1,1,????) model with time power and its application[J]. Systems Engineering-Theory & Practice, 2012, 32(10): 2247-2252.)
[22]  Wang J Z, Zhu S L, Zhao W G, et al. Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm[J]. Expert Systems with Applications, 2011, 38(7): 8151-8158.
[23]  Zhao Z, Wang J Z, Zhao J, et al. Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China[J]. Omega, 2012, 40(5): 525-532.
[24]  Evans M. An alternative approach to estimating the parameters of a generalised grey verhulst model: An application to steel intensity of use in the UK[J]. Expert Systems with Applications, 2014, 41(4): 1236-1244.
[25]  Xie N M, Liu S F. Discrete grey forecasting model and its optimization[J]. Applied Mathematical Modeling, 2009, 33(2): 1173-1186.
[26]  邬丽云, 吴正朋, 李梅. 二次时变参数离散灰色模型[J]. 系统工程理论与实践, 2013, 33(11): 2887-2893.
[27]  (Wu L Y,Wu Z P, Li M. Quadratic time-varying parameters discrete grey model[J]. Systems Engineering-Theory& Practice, 2013, 33(11): 2887-2893.)
[28]  杨保华, 方志耕, 张可. 基于级比序列的离散GM(1,1) 模型[J]. 系统工程与电子技术, 2012, 34(4): 715-718.
[29]  (Yang B H, Fang Z G, Zhang K. Discrete GM(1,1) model based on sequence of stepwise ratio[J]. J of Systems Engineering and Electronics, 2012, 34(4): 715-718.)
[30]  张碧陶, 皮佑国. 永磁同步电机伺服系统模糊分数阶滑模控制[J]. 控制与决策, 2012, 27(12): 1776-1780.
[31]  (Zhang B T, Pi Y G. Fractional order fuzzy sliding model control for permanent magnet synchronous motor servo drive[J]. Control and Decision, 2012, 27(12): 1776-1780.)
[32]  Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7): 1775-1785.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133