(Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037-1050.)
[3]
Cristianino N, Shawe-Taylor J. An introduction to sup-port vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000: 45-78.
[4]
Lanckriet G, Cristianint N, Bartlett P, et al. Learning the kernel matrix with semi-definite programming[J]. The J of Machine Learning Research, 2004, 5(1): 27-72.
[5]
Jian L, Xia Z, Liang X, et al. Design of a multiple kernel learning algorithm for LS-SVM by convex programming[J]. Neural Networks, 2011, 24(5): 476-483.
[6]
Chen X, Guo N, Ma Y, et al. More efficient sparse multi-kernel based least square support vector machine[C]. Communications and Information Processing. Berlin: Springer-Heidelberg, 2012: 70-78.
[7]
Kloft M, Brefeld U, Sonnenburg S, et al. Lp-norm multiple kernel learning[J]. The J of Machine Learning Research, 2011, 12(3): 953-997.
[8]
Yan F, Kittler J, Mikolajczyk K, et al. Non-sparse multiple kernel fisher discriminant analysis[J]. The J of Machine Learning Research, 2012, 13(3): 607-642.
[9]
Sun T, Jiao L, Liu F, et al. Selective multiple kernel learning for classification with ensemble strategy[J]. Pattern Recognition, 2013, 46(11): 3081-3090.
[10]
Ivanov V K, Vasin V V, Tanana V P. Theory of linear ill-posed problems and its applications[M].Walter de Gruyter, 2002: 124-199.
[11]
Tikhonov A N, Arsenin V I A, John F. Solutions of ill-posed problems[M]. Washington DC: Winston, 1977: 191-222.
[12]
Zhang X, Hu L, Zhang L. An efficient multiple kernel computation method for regression analysis of economic data[J]. Neurocomputing, 2013, 118(10): 58-64.
[13]
Ceperic V, Gielen G, Baric A. Sparse multikernel support vector regression machines trained by active learning[J]. Expert Systems with Applications, 2012, 39(12): 11029-11035.
[14]
Cai Y, Wang H, Ye X, et al. A multiple-kernel LSSVR method for separable nonlinear system identification[J]. J of Control Theory and Applications, 2013, 11(4): 651-655.