全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种采用抽样策略的PSO算法

DOI: 10.13195/j.kzyjc.2014.1111, PP. 1779-1784

Keywords: 粒子群优化算法,抽样策略,局部搜索,全局优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

原始粒子群优化算法(PSO)和各种改进方法存在着参数取值固定、收敛精度低等问题.为此,提出一种采用抽样策略的粒子群优化算法(SS-PSO).通过拉丁超立方抽样(LHS)策略更新粒子速度和位置,以加快收敛速度;提出一种基于随机采样的最优位置修正方法,以微调全局最优;提出“双抽样”LHS局部搜索方法,以提高收敛精度.与其他新近提出的两个算法进行对比,结果显示SS-PSO在一定程度上提高了算法的性能.

References

[1]  Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc IEEE Int Conf on Neural Networks. Perth: Perth IEEE Press, 1995: 1942-1948.
[2]  Qu B Y, Suganthan P N, Das S. A distance-based locally informed particle swarm model for multimodal optimization[J]. IEEE Trans on Evolutionary Computation, 2013, 17(3): 387-402.
[3]  温涛, 盛国军, 郭权, 等. 基于改进粒子群算法的Web 服务组合[J]. 计算机学报, 2013, 36(5):1031-1046.
[4]  (Wen T, Sheng G J, Guo Q, et al. Web service composition based on modified particle swarm optimization[J]. Chinese J of Computers, 2013, 36(5): 1031-1046.)
[5]  胥小波, 蒋琴琴, 郑康锋, 等. 基于混沌粒子群的IDS 告警聚类算法[J]. 通信学报, 2013, 34(3): 105-110.
[6]  (Xu X B, Jiang Q Q, Zheng K F, et al. IDS alert clustering algorithm based on chaotic particle swarm optimization[J]. J on Communications, 2013, 34(3): 105-110.)
[7]  Sadeghi J, Sadeghi S, Niaki S T A. Optimizing a hybrid vendor-managed inventory and transportation problem with fuzzy demand: An improved particle swarm optimization algorithm[J]. Information Sciences, 2014, 272: 126-144.
[8]  Nedic V, Cvetanovic S, Despotovic D, et al. Data mining with various optimization methods[J]. Expert Systems with Applications, 2014, 41(8): 3993-3999.
[9]  Feng H M, Liao K L. Hybrid evolutionary fuzzy learning scheme in the applications of traveling salesman problems[J]. Information Sciences, 2014, 270: 204-225.
[10]  Jin X, Liang Y Q, Tian D P, et al. Particle swarm optimization using dimension selection methods[J]. Applied Mathematics and Computation, 2013, 219(10): 5185-5197.
[11]  Xu G. An adaptive parameter tuning of particle swarm optimization algorithm[J]. Applied Mathematics and Computation, 2013, 219(9): 4560-4569.
[12]  Beheshti Z, Hj Shamsuddin S M. CAPSO: Centripetal accelerated particle swarm optimization[J]. Information Sciences, 2014, 258: 54-79.
[13]  Liang J J, Qin A K, Suganthan P N. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
[14]  朱喜华, 李颖晖, 李宁, 等. 基于群体早熟程度和非线性周期振荡策略的改进粒子群算法[J]. 通信学报, 2014, 35(2): 182-189.
[15]  (Zhu X H, Li Y H, Li N, et al. Improved PSO algorithm based on swarm prematurely degree and nonlinear periodic oscillating strategy[J]. J on Communications, 2014, 35(2): 182-189.)
[16]  Li N J, WangW J, James Hsu C C, et al. Enhanced particle swarm optimizer incorporating a weighted particle[J]. Neurocomputing, 2014, 124: 218-227.
[17]  Liu H, Ding G, Wang B. Bare-bones particle swarm optimization with disruption operator[J]. Applied Mathematics and Computation, 2014, 238: 106-122.
[18]  Han F, Liu Q. A diversity-guided hybrid particle swarm optimization based on gradient search[J]. Neurocomputing, 2014, 137: 234-240.
[19]  McKayMD, Beckman R J, ConoverWJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245.
[20]  刘杨, 田学锋, 詹志辉, 等. 粒子群优化算法惯量权重控制方法的研究[J]. 南京大学学报: 自然科学版, 2011, 47(4): 364-371.
[21]  (Liu Y, Tian X F, Zhan Z H, et al. Research on inertia weight control approaches in particle swarm optimization[J]. J of Nanjing University: Natural Sciences, 2011, 47(4): 364-371.)
[22]  张治俊, 罗辞勇, 张帆, 等. 采用振荡参数策略的粒子群优化算法[J]. 重庆大学学报, 2011, 34(6): 36-41.
[23]  (Zhang Z J, Luo C Y, Zhang F, et al. Particle swarm optimization with oscillating parameter strategy[J]. J of Chongqing University, 2011, 34(6): 36-41.)
[24]  金敏, 鲁华祥. 一种遗传算法与粒子群优化的多子群分层混合算法[J]. 控制理论与应用, 2013, 30(10): 1231-1238.
[25]  (Jin M, Lu H X. A multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization[J]. Control Theory & Applications, 2013, 30(10): 1231-1238.)
[26]  Qu B Y, Liang J J, Suganthan P N. Niching particle swarm optimization with local search for multi-modal optimization[J]. Information Sciences, 2012, 197: 131-143.
[27]  Li M, Kang H, Zhou P. Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm [J]. J of Systems Engineering and Electronics, 2013, 24(2): 324-334.
[28]  Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239.
[29]  姜建国, 李锦, 龙秀萍, 等. 采用小生境技术的混合蛙跳算法[J]. 计算力学学报, 2012, 29(6): 960-965.
[30]  (Jiang J G, Li J, Long X P, et al. A shuffled frog leaping algorithm using niche technology[J]. Chinese J of Computational Mechanics, 2012, 29(6): 960-965.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133