全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于具有自适应分段损失函数支持向量机的产品销售预测模型

DOI: 10.13195/j.kzyjc.2013.154, PP. 1803-1809

Keywords: 销售时序,噪声,自适应分段损失函数,支持向量机,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对产品销售时序包含噪声的数据特征,提出一种基于自适应分段损失函数的支持向量机模型(AS??-SVM).AS??-SVM为每个样本点赋一个单独的不敏感损失值,以此降低模型对包含较大噪声的样本点的依赖性,并从理论上证明了该方法可增强模型部分的泛化性能.将AS??-SVM与??-SVM共同应用于处理一个数值算例和一个汽车销售预测实例中,仿真实验结果表明,AS??-SVM是有效可行的,可获得比??-SVM更精确的预测结果.

References

[1]  Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 2000: 138-167.
[2]  邓乃扬, 田英杰. 数据挖掘中的新方法—–支持向量机[M]. 北京: 科学出版社, 2006: 224-270.
[3]  (Deng N Y, Tian Y J. A new method of data mining—Support vector machine[M]. Beijing: Science Press, 2006: 224-270.)
[4]  陶新民, 郝思媛, 张冬雪, 等. 基于样本特性欠取样的不均衡支持向量机[J]. 控制与决策, 2013, 28(7): 978-984.
[5]  (Tao X M, Hao S Y, Zhang D X, et al. Support vector machine for unbalanced data based on sample properties under-sampling approaches[J]. Control and Decision, 2013, 28(7): 978-984.)
[6]  姚宝珍, 杨成永, 于滨. 动态公交车辆运行时间预测模型[J]. 系统工程学报, 2010, 25(3): 365-370.
[7]  (Yao B Z, Yang C Y, Yu B. Dynamic bus travel-time prediction model[J]. J of System Engineering, 2010, 25(3): 365-370.)
[8]  周辉仁, 郑丕谔, 任仙玲. 最小二乘支持向量机的参数优选方法及应用[J]. 系统工程学报, 2009, 24(2): 248-252.
[9]  (Zhou H R, Zheng P E, Ren X L. Method for selecting parameters of least squares support vector machines and application[J]. J of System Engineering, 2009, 24(2): 248-252.)
[10]  商志根, 严洪森. 基于模糊支持向量机的产品设计时间预测[J]. 控制与决策, 2012, 27(4): 531-534.
[11]  (Shang Z G, Yan H S. Forecasting product design time based on fuzzy support vector machine[J]. Control and Decision, 2012, 27(4): 531-534.)
[12]  Lee Y J, HsiehWF, Huang C M. SSVR: A smooth support vector machine for insensitive regression[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(5): 678-685.
[13]  Gu J R, Zhu M C, Jiang L G Y. Housing price forecasting based on genetic algorithm and support vector machine[J]. Expert Systems with Applications, 2011, 38(4): 3383-3386.
[14]  Yanga B S, Hwanga W W, Kima D J, et al. Conditionclassification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines[J]. Mechanical Systems and Signal Processing, 2005, 19(2): 371-390.
[15]  张英, 苏宏业, 褚健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621-624.
[16]  (Zhang Y, Su H Y, Chu J. Soft sensor modeling based on fuzzy least squares support vector Machines[J]. Control and Decision, 2005, 20(6): 621-624.)
[17]  姚潇, 余乐安. 模糊近似支持向量机模型及其在信用风险评估中的应用[J]. 系统工程理论实践, 2012, 32(3): 549-554.
[18]  (Yao X, Yu L A. A fuzzy proximal support vector machine model and its application to credit risk analysis[J]. Systems Engineering-Theory & Practice, 2012, 32(3): 549-554.)
[19]  Lin C F, Wang S D. Training algorithms for fuzzy support vector machines with noisy data[J]. Pattern Recognition Letters, 2004, 25(14): 1647-1656.
[20]  Li D F, Hu W C, Xiong W, et al. Fuzzy relevance vector machine for learning from unbalanced data and noise[J]. Pattern Recognition Letters, 2008, 29(9): 1175-1181.
[21]  张桂香, 费岚, 杜喆, 等. 非均衡数据的去噪模糊支持向量机新方法[J]. 计算机工程与应用, 2008, 44(16): 142-144.
[22]  (Zhang G X, Fei L, Du Z, et al. New noise-immune fuzzy SVM algorithm for unbalanced data[J]. Computer Engineering and Applications, 2008, 44(16): 142-144.)
[23]  Yang Z Z, Jin L J, Wang M H. Forecasting baltic panamax index with support vector machine[J]. J of Transportation Systems Engineerning & Information Technology, 2011, 11(3): 50-57.
[24]  Guo J, Zhou J Z, Qin H, et al. Monthly stream flow forecasting based on improved support vector machine model[J]. Expert Systems with Applications, 2011, 38(10): 13073-13081.
[25]  蒋蔚, 伊国兴, 曾庆双. 一种基于SVM重采样的似然粒子滤波算法[J]. 控制与决策, 2011, 26(2): 243-247.
[26]  (Jiang W, Yi G X, Zeng Q S. Likelihood particle filter based on support vector machines resampling[J]. Control and Decision, 2011, 26(2): 243-247.)
[27]  吴奇, 严洪森. 基于具有高斯损失函数支持向量机的预测模型[J]. 计算机集成制造系统, 2009, 15(2): 306-312.
[28]  (Wu Q, Yan H S. Forecasting method based 0n support Vector m achine with Gaussian loss function[J]. Computer Integrated Manufacturing System, 2009, 15(2): 306-312.)
[29]  Li H X, Yang J L, Zhang G, et al. Probabilistic support vector machines for classification of noise affected data[J]. Information Sciences, 2013, 221(1): 60-71.
[30]  吴奇, 严洪森. 基于鲁棒??-支持向量机的产品销售预测模型[J]. 计算机集成制造系统, 2009, 15(6): 1081-1087.
[31]  (Wu Q, Yan H S. Product sales forecasting model based on robust ??-support vector machine[J]. Computer Integrated anufacturing System, 2009, 15(6): 1081-1087.)
[32]  胡根生, 邓飞其, 具分段损失函数的支持向量机回归及 在投资决策中的应用[J]. 控制理论与应用, 2006, 23(2): 315-318.
[33]  (Hu G S, Deng F Q. Support vector regression with piecewise loss function and its application in investment decision[J]. Control Theory & Applications, 2006, 23(2): 315-318.)
[34]  胡根生, 邓飞其. 具有多分段损失函数的多输出支持向量机回归[J]. 控制理论与应用, 2007, 24(5): 711-714.
[35]  (Hu G S, Deng F Q. Multi-output support vector regression with piecewise loss function[J]. Control Theory & Applications, 2007, 24(5): 711-714.)
[36]  An W J, Liang M G. Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises[J]. Neurocomputing, 2013, 110(6): 101-110.
[37]  Yang X W, Tan L J, He L F. A robust least squares support vector machine for regression and classification with noise[J]. Neurocomputing, 2014, 140(9): 41-52.
[38]  Hu Q H, Zhang S G, Xie Z X, et al. Noise model based ??-support vector regression with its application to short-term wind speed forecasting[J]. Neural Networks, 2014, 57(9): 1-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133