(Feng X S, Li Y P, Xu H L. The next generation of unmanned marine vehicles dedicated to the 50 anniversary of the human world record diving 10 912 m[J]. Robot, 2011, 33(1): 113-118.)
(Zhu X K, Jin X L, Tao C H, et al. Discussion on development of ocean exploration technologies and equipments[J]. Robot, 2013, 35(3): 376-384.)
[5]
Soylu S, Buckham B J, Podhorodeski R P. A chatteringfree sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
[6]
Akmal M, Yusoff M, Arshad M R. Active fault tolerant control of a remotely operated vehicle propulsion system[J]. Procedia Engineering, 2012, 41: 622-628.
[7]
Inoue T, Katsui T, Murakami H, et al. Preliminary research on the thruster assisted crawler system for a deep sea ROV[C]. OCEANS’09 IEEE Bremen:Balancing Technology with Future Needs. Bremen: IEEE, 2009: 1-5.
(Xu Y R, Xiao K. Technology development of autonomous qcean vehicle[J]. Acta Automatic Sinica, 2007, 33(5): 518-521.)
[12]
Allen B, Stokey R, Austin T, et al. REMUS: A small, low cost AUV; system description, field trials and performance results[C]. Proc of MTS/IEEE Oceans. Halifax: IEEE, 1997: 994-1000.
[13]
Prabhakar S, Buckham B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]. Proc of MTS/IEEE Oceans. Washington DC: IEEE, 2005: 1255-1262.
[14]
Tehrani N H, Heidari M, Zakeri Y, et al. Development, depth control and stability analysis of an underwater remotely operated vehicle(ROV)[C]. The 8th IEEE Int Conf on Control and Automation. Xiamen: IEEE, 2010: 814-819.
[15]
Zanoli S M, Conte G. Remotely operated vehicle depth control[J]. Control Engineering Practice, 2003, 11(4): 453-459.
(Fan S B, Lian L, Ren P. 3D trajectory tracking control platform design for deep sea open-framed remotely operated vehicle based on hydrodynamics test[J]. J of Ship Mechanics, 2012, 16(12): 1408-1416.)
(Zhu K W, Gu L Y, Ma X J, et al. Studies on multivariable robust output feedback control for underwater vehicles[J]. J of Zhejiang University: Engineering Science, 2012, 46(8): 1397-1406.)
(Yu J C, Zhang A Q, Wang X H, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatic Sinica, 2007, 33(8): 840-846.)
(Wei Y H, Peng F G, Sheng C, et al. Control method of the stability of AUV[J]. J of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(2): 127-132.)
[24]
Sharma R, Rana K P S, Kumar V. Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator[J]. Expert Systems with Applications, 2014, 41(9): 4274-4289.
[25]
Duan Xiaogang, Li Hanxiong, Deng Hua. Robustness of fuzzy PID controller due to its inherent saturation[J]. J of Process Control, 2012, 22(2): 470-476.
[26]
Ren Yaoqing, Duan Xiaogang, Li Hanxiong, et al. Multivariable fuzzy logic control for a class of distributed parameter systems[J]. J of Process Control, 2013, 23(3): 351-358.
[27]
Azis F A, Aras M S M, Rashid M Z A, et al. Problem identification for underwater remotely operated vehicle(ROV): A case study[J]. Procedia Engineering, 2012, 41: 554-560.
[28]
Avila J P J, Donha D C, Adamowski J C. Experimental model identification of open-frame underwater vehicles[J]. Ocean Engineering, 2013, 60: 81-94.