全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深海ROV伺服控制方法研究及其仿真

DOI: 10.13195/j.kzyjc.2014.1109, PP. 1785-1790

Keywords: 水下机器人,推力分析,静止稳定,模糊PID,控制,仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对深海水下机器人(ROV)处于深海环境中受到外界干扰的伺服控制这一问题,首先建立推进器推力分配结构,推导得出作用在ROV本体上相应的实际推力;然后依据PID原理和模糊规则,构造模糊PID控制器,实现ROV消除外界干扰恢复静止稳定状态的伺服控制;最后通过仿真实验表明了所构造的模糊PID控制具有较好的动态性能和稳态性能,显示出良好的伺服控制性能.

References

[1]  封锡盛, 李一平, 徐红丽. 下一代海洋机器人—–写在人类创造下潜深度世界记录10 912 米50 周年之际[J]. 机器人, 2011, 33(1): 113-118.
[2]  (Feng X S, Li Y P, Xu H L. The next generation of unmanned marine vehicles dedicated to the 50 anniversary of the human world record diving 10 912 m[J]. Robot, 2011, 33(1): 113-118.)
[3]  朱心科, 金翔龙, 陶春辉, 等. 海洋探测技术与装备发展探讨[J]. 机器人, 2013, 35(3): 376-384.
[4]  (Zhu X K, Jin X L, Tao C H, et al. Discussion on development of ocean exploration technologies and equipments[J]. Robot, 2013, 35(3): 376-384.)
[5]  Soylu S, Buckham B J, Podhorodeski R P. A chatteringfree sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
[6]  Akmal M, Yusoff M, Arshad M R. Active fault tolerant control of a remotely operated vehicle propulsion system[J]. Procedia Engineering, 2012, 41: 622-628.
[7]  Inoue T, Katsui T, Murakami H, et al. Preliminary research on the thruster assisted crawler system for a deep sea ROV[C]. OCEANS’09 IEEE Bremen:Balancing Technology with Future Needs. Bremen: IEEE, 2009: 1-5.
[8]  蒋新松, 封锡盛, 王棣棠. 水下机器人[M]. 沈阳:辽宁科学技术出版社, 2000: 30-31.
[9]  (Jiang X S, Feng X S, Wang D T. Unmanned underwater vehicles[M]. Shenyang: Liaoning Science and Technology Publishing House, 2000: 30-31.)
[10]  徐玉如, 肖坤. 智能海洋机器人技术进展[J]. 自动化学报, 2007, 33(5): 518-521.
[11]  (Xu Y R, Xiao K. Technology development of autonomous qcean vehicle[J]. Acta Automatic Sinica, 2007, 33(5): 518-521.)
[12]  Allen B, Stokey R, Austin T, et al. REMUS: A small, low cost AUV; system description, field trials and performance results[C]. Proc of MTS/IEEE Oceans. Halifax: IEEE, 1997: 994-1000.
[13]  Prabhakar S, Buckham B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]. Proc of MTS/IEEE Oceans. Washington DC: IEEE, 2005: 1255-1262.
[14]  Tehrani N H, Heidari M, Zakeri Y, et al. Development, depth control and stability analysis of an underwater remotely operated vehicle(ROV)[C]. The 8th IEEE Int Conf on Control and Automation. Xiamen: IEEE, 2010: 814-819.
[15]  Zanoli S M, Conte G. Remotely operated vehicle depth control[J]. Control Engineering Practice, 2003, 11(4): 453-459.
[16]  范士波, 连琏, 任平. 基于水动力试验的深海开架式潜水器三维轨迹跟踪控制平台设计[J]. 船舶力学, 2012, 16(12): 1408-1416.
[17]  (Fan S B, Lian L, Ren P. 3D trajectory tracking control platform design for deep sea open-framed remotely operated vehicle based on hydrodynamics test[J]. J of Ship Mechanics, 2012, 16(12): 1408-1416.)
[18]  朱康武, 顾临怡, 马新军, 等. 水下运载器多变量鲁棒输出反馈控制方法[J]. 浙江大学学报: 工学版, 2012, 46(8): 1397-1406.
[19]  (Zhu K W, Gu L Y, Ma X J, et al. Studies on multivariable robust output feedback control for underwater vehicles[J]. J of Zhejiang University: Engineering Science, 2012, 46(8): 1397-1406.)
[20]  俞建成, 张艾群, 王晓辉, 等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8): 840-846.
[21]  (Yu J C, Zhang A Q, Wang X H, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatic Sinica, 2007, 33(8): 840-846.)
[22]  魏延辉, 彭富国, 盛超, 等. 自主式水下机器人运动稳定 性控制方法[J]. 华中科技大学学报: 自然科学版, 2014, 42(2): 127-132.
[23]  (Wei Y H, Peng F G, Sheng C, et al. Control method of the stability of AUV[J]. J of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(2): 127-132.)
[24]  Sharma R, Rana K P S, Kumar V. Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator[J]. Expert Systems with Applications, 2014, 41(9): 4274-4289.
[25]  Duan Xiaogang, Li Hanxiong, Deng Hua. Robustness of fuzzy PID controller due to its inherent saturation[J]. J of Process Control, 2012, 22(2): 470-476.
[26]  Ren Yaoqing, Duan Xiaogang, Li Hanxiong, et al. Multivariable fuzzy logic control for a class of distributed parameter systems[J]. J of Process Control, 2013, 23(3): 351-358.
[27]  Azis F A, Aras M S M, Rashid M Z A, et al. Problem identification for underwater remotely operated vehicle(ROV): A case study[J]. Procedia Engineering, 2012, 41: 554-560.
[28]  Avila J P J, Donha D C, Adamowski J C. Experimental model identification of open-frame underwater vehicles[J]. Ocean Engineering, 2013, 60: 81-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133