全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

输入饱和受限下的刚体飞行器姿态系统的有限时间镇定

DOI: 10.13195/j.kzyjc.2014.0840, PP. 1386-1392

Keywords: 刚体飞行器,姿态控制,有限时间控制,输入饱和

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究存在输入饱和受限下的飞行器姿态控制问题,提出一种有限时间姿态镇定方案.针对基于修改的Rodriguez参数模型的飞行器姿态控制系统,基于齐次性理论和饱和控制器设计方法,并充分利用系统的模型结构特征,设计一类饱和的有限时间姿态控制器,使得姿态可以在有限时间内被镇定到平衡点.仿真结果验证了所设计姿态控制器的有效性.

References

[1]  Tsiotras P. Stabilization and optimality results for the attitude control problem[J]. J of Guidance, Control and Dynamics, 1996, 19(4): 772-779.
[2]  Lizarralde F, Wen J T. Attitude control without angular velocity measurement: A passivity approach[J]. IEEE Trans on Automatic Control, 1996, 41(3): 468-472.
[3]  Xia Y, Zhu Z, Fu M, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Trans on Industrial Electronics, 2011, 58(2): 647-659.
[4]  Costic B T, Dawson D M, de Queiroz M S, et al.
[5]  Quaternion-based adaptive attitude tracking controller without velocity measurements[J]. J of Guidance, Control, and Dynamics, 2001, 24(6): 1214-1222.
[6]  Chen Z, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control[J]. IEEE Trans on Automatic Control, 2009, 54(3): 600-605.
[7]  Cheng C, Shu S. Application of fuzzy controllers for spacecraft attitude control[J]. IEEE Trans on Aerospace and Electronic Systems, 2009, 45(2): 761-765.
[8]  丁世宏, 李世华. 有限时间控制问题综述[J]. 控制与决策, 2011, 26(2): 161-169.
[9]  (Ding S H, Li S H. A survey for finite-time control problems[J]. Control and Decision, 2011, 26(2): 161-169.)
[10]  Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM J on Control and Optimization, 2000, 38(3): 751-766.
[11]  李世华, 丁世宏, 田玉平. 一类二阶非线性系统的有限时间状态反馈镇定方法[J]. 自动化学报, 2007, 33(1): 101-104.
[12]  (Li S H, Ding S H, Tian Y P. A finite-time state feedback stabilization method for a class of second order nonlinear systems[J]. Acta Automatica Sinica, 2007, 33(1): 101-104.)
[13]  Ding S H, Li S H, Li Q. Disturbance analysis for continuous finite-time control systems[J]. J of Control Theory and Applications, 2009, 7(3): 271-276.
[14]  Li S, Du H, Lin X. Finite-time consensus algorithm for multi-agent systems with double-interrator dynamics[J]. Automatica, 2011, 47(8): 1706-1712.
[15]  Du H, Qian C, Yang S, et al. Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems[J]. Automatica, 2013, 49(2): 601-609.
[16]  都海波, 李世华, 何怡刚, 等. 多枚倾斜转弯导弹的滚转通道之分布式有限时间姿态协调控制[J]. 控制理论与应用, 2013, 30(8): 956-963.
[17]  (Du H B, Li S H, He Y G, et al. Distributed finite-time attitude cooperative control for roll channels of multiple bank-to-turn missiles[J]. Control Theory & Applications, 2013, 30(8): 956-963.)
[18]  Ding S, Li S. Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques[J]. Aerospace Science and Technology, 2009, 13(4/5): 256-265.
[19]  Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(9): 2159-2167.
[20]  Qian C, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Trans on Automatic Control, 2001, 46(7): 1061-1079.
[21]  Zhu Z, Xia Y, Fu M. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. Int J of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[22]  Li S, Ding S, Li Q. Global set stabilisation of the spacecraft attitude using finite-time control technique[J]. Int J of Control, 2009, 82(5): 822-836.
[23]  丁世宏, 李世华. 输入饱和下的非线性积分系统的全局有限时间镇定[J]. 自动化学报, 2011, 37(10): 1222-1231.
[24]  (Ding S H, Li S H. Global finite-time stabilization of nonlinear integrator systems subject to input saturation[J]. Acta Automatica Sinica, 2011, 37(10): 1222-1231.)
[25]  Shuster M D. A survey of attitude representations[J]. J of the Astronautical Sciences, 1993, 41(4): 439-517.
[26]  Khalil H K. Nonlinear systems[M]. 3rd ed. NJ: Prentice Hall, Upper Saddle River, 2002.
[27]  Du H, Li S, Qian C. Finite-time attitude tracking control of spacecraft with application to attitude synchronization[J]. IEEE Trans on Automatic Control, 2011, 56(11): 2711-2717.
[28]  Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls[J]. Differential Aligns, Stability and Control, 1991, 109: 249-260.
[29]  Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems and Control Letters, 1992, 19(6): 467-473.
[30]  Qian C. A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems[C]. Proc of 2005 American Control Conf. Portland, 2005: 4708-4715.
[31]  Hong Y. Finite-time stabilization and stabilizability of a class of controllable systems[J]. Systems and Control Letters, 2002, 46(2): 231-236.
[32]  Slotine J E, Di Benedetto M D. Hamiltonian adaptive control of spacecraft[J]. IEEE Trans on Automatic Control, 1990, 35(7): 848-852.
[33]  Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
[34]  Yu X, Wang B, Galias Z, et al. Discretization effect on equivalent control-based multi-input sliding-mode control systems[J]. IEEE Trans on Automatic Control, 2008, 53(6): 1563-1569.
[35]  Bhat S P, Bernstein D S. Geometric homogeneity with application to finite-time stability[J]. Mathematics of Control Signals Systems, 2005: 17(2): 101-127.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133