全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Multi-kernel和KRR的数据还原算法

DOI: 10.13195/j.kzyjc.2013.0193, PP. 821-826

Keywords: 多核,数据还原,核岭回归,迭代,超高维欧氏空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于数据被核化后不能还原,使核方法的应用受到局限.对此,提出一种基于Multi-kernel和KRR的数据还原算法.首先,通过同类数据中已知数据进行多次核化迭代,使已知数据在超高维欧氏空间中呈线性;然后,利用已知数据对同类未知数据进行线性表示,并以Kernelridgeregression(KRR)算法进行未知数据的回归;最后实现数据还原.选取Irisflower和JAFFE两类数据集进行还原实验,实验结果表明,所提出的算法可以有效地还原未知数据,而且在其他领域的应用也有较好的效果.

References

[1]  Wang F, Ding J L, Hu Z F. Induction motor speedregulating control system based on nonlinear kernel ridge regression[C]. Proc of 7th Int Conf on Intelligent Computing. Zhengzhou: Springer Press, 2012: 658-663.
[2]  Kim N, Jeong Y S, Jeong M K, et al. Kernel ridge regression with lagged-dependent variable: Applications to prediction of internal bond strength in a medium density fiberboard process[J]. IEEE Trans on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1011-1020.
[3]  Douak F, Melgani F, Benoudjit N. Kernel ridge regression with active learning for wind speed prediction[J]. Applied Energy, 2013, 103: 328-340.
[4]  Orsenigo C, Vercellis C. Kernel ridge regression for out-ofsample mapping in supervised manifold learning[J]. Expert Systems with Applications, 2012, 39(9): 7757-7762.
[5]  Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[6]  Ch¨olkopf B, Mika S, Smola A, et al. Kernel PCA pattern reconstruction via approximation pre-images[C]. Proc of the Int Conf on Artificial Neural Networks. Skovde: IEEE Press, 1998: 147-152.
[7]  Baudat G, Anousr F. Generalized discriminant analysis using a kernel approach[J]. Neural Computation, 2000, 12(10): 2385-2404.
[8]  Cristianini N, Shawe-Taylor J. An introduction to support vector machines[M]. Cambridge: Cambridge University Press, 2000: 77-92.
[9]  Gehler P V, Nowozin S. Infinite kernel learning[R]. Germany: Max Planck Institute for Biological Cybernetics, 2008.
[10]  Bennett K P, Momma M, Embrechts M J. MARK: A boosting algorithm for heterogeneous kernel models[C]. Proc of the 8th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. Alberta: IEEE Press, 2002: 24-31.
[11]  Lanckriet G, Cristianini N, Bartlett P, et al. Learning the kernel matrix with semi-definite programming[J]. The J of Machine Learning Research, 2004, 5(1): 27-72.
[12]  Xiong H, Swamy M N S, Ahmad M O. Optimizing the kernel in the empirical feature space[J]. IEEE Trans on Neural Networks, 2005, 16(2): 460-474.
[13]  Chen B, Liu H W, Bao Z. Optimizing the data-dependent kernel under unified kernel optimization framework[J]. Pattern Recognition. 2008, 41(6): 2107-2119.
[14]  王峰, 张鸿宾. 最优双核复合分类算法的构造[J]. 电子学报, 2012, 40(2): 260-265.
[15]  (Wang F, Zhang H B. Optimal double-kernel combination method for classification[J]. Acta Electronica Sinica, 2012, 40(2): 260-265.)
[16]  Lamrini B, Lakhal E K, Le LannMV, et al. Data validation and missing data reconstruction using self-organizing map for water treatment[J]. Neural Computing & Applications, 2011, 20(4): 575-588.
[17]  Chen Y H, Chen X H, Ji Y Q, et al. Research on system modeling and data reconstruction for spatial coding compressive spectral imaging[C]. Proc of SPIEOptoelectronic Imaging and Multimedia Technology II. Beijing: SPIE Press, 2012, 8558: 855819.
[18]  Li Y, Jiang L, Li X L, et al. A QSAR model for predicting PBDEs toxicity established based on ridge regression[J]. Advanced Materials Research, 2013, 663: 922-925.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133