全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利于节能减排的交通诱导与控制时空融合算法

DOI: 10.13195/j.kzyjc.2013.1689, PP. 1330-1334

Keywords: 交通工程,交通诱导与控制,时空融合算法,节能减排

Full-Text   Cite this paper   Add to My Lib

Abstract:

交通诱导与控制时空融合算法以车流量平衡为最终目标.为使融合算法的调速过程利于节能减排,调速应不突变,提高低速,保持高速,避免拥堵.为此,建立了表征路网各路段车速的实时速度网,以此为基础,进行符合节能减排目标的交通诱导与控制的融合,以及单时空流调速和多时空流调速.与其他协同方法进行仿真比较的结果表明,时空融合算法的能耗与排放明显降低.

References

[1]  谭金华, 石京. 高速公路间断放行的能耗和排放影响[J]. 清华大学学报: 自然科学版, 2013, 53(4): 499-502.
[2]  (Tan J H, Shi J. Impact of intermittent vehicle release on freeway energy dissipation and emissions[J]. J of Tsinghua University: Science and Technology, 2013, 53(4): 499-502.)
[3]  王晓宁, 吴志涛. 基于环境空气容量的最大出行产生率[J]. 哈尔滨工业大学学报, 2012, 44(10): 61-65.
[4]  (Wang X N, Wu Z T. Maximum trip generation rate based on environmental air capacity[J]. J of Harbin Institute of Technology, 2012, 44(10): 61-65.)
[5]  董红召, 徐勇斌, 陈宁. 城市交通中机动车尾气排放与扩散特性的研究[J]. 内燃机工程, 2011, 32(2): 12-16.
[6]  (Dong H Z, Xu Y B, Chen N. Research on vehicle emission and dispersion characteristics in urban public transport[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(2): 12-16.)
[7]  邓顺熙, 李百川, 陈爱侠. 中国公路线源污染物排放强度的计算方法[J]. 交通运输工程学报, 2001, 1(4): 83-86.
[8]  (Deng S X, Li B C, Chen A X. A methodology for the determination of emission rates from vehicular pollutants on highway in China[J]. J of Traffic and Transportation Engineering, 2001, 1(4): 83-86.)
[9]  Kamarianakis Y, Wei S, Wynter L. Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO[J]. Applied Stochastic Models in Business and Industry, 2012, 28(4): 297-315.
[10]  Dong C J, Shao C F, Ma Z L, et al. Temporalspacial characteristic of urban expressway under jam flow condition[J]. J of Traffic and Transportation Engineering, 2012, 12(3): 73-79.
[11]  于战科, 张艳华, 汪泽众, 等. 改进遗传算法在城市交通诱导策略中的应用[J]. 控制与决策, 2011, 26(12): 1891-1894.
[12]  (Yu Z K, Zhang Y H, Wang Z Z, et al. Improved genetic algorithm for urban traffic flow guidance strategy[J]. Control and Decision, 2011, 26(12): 1891-1894.)
[13]  Dai H, Yang Z S, Li X G. Hierarchical intelligent control and coordination of urban traffic management systems[C]. Proc of Int Conf on Machine Learning and Cybernetics. Berlin: Springer Press, 2005: 1170-1174.
[14]  Yang Z S, Yang C X, Sun J P. Study on information processing in the integration of urban traffic flow guidance system and urban traffic control system[C]. Proc of IEEE Int Conf on Intelligent Transportation Systems. New York: IEEE Press, 2003: 47-49.
[15]  Li R M, Shi Q X. Study on integration of urban traffic control and route guidance based on multi-agent technology[C]. Proc of IEEE Int Conf on Intelligent Transportation Systems. New York: IEEE Press, 2003: 1740-1744.
[16]  Zhao X H, Shang Y Z, Tan L L. A study on cooperation of urban traffic control and route guidance for congested condition[C]. Proc of Int Conf of Chinese Transportation Professionals. Virginia: ASCE Press, 2010: 2149-2158.
[17]  Gong Y, Li S J. Fusion framework of urban traffic control and route guidance based on CPS theory[J]. J of Highway and Transportation Research and Development, 2012, 7(1): 82-89.
[18]  Winters W S, Evans G H. Final report for the ASC gaspowder two-phase flow modeling project AD2006-09[R]. New Mexico: Sandia National Laboratories, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133