全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

灰色二层多目标线性规划问题及其解法

DOI: 10.13195/j.kzyjc.2013.0617, PP. 1193-1198

Keywords: 灰色系统,二层多目标规划,理想点法,库恩塔克条件,粒子群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对二层多目标线性规划问题,结合灰色系统的特性,提出了一般灰色二层多目标线性规划问题,并给出了模型的相关定义和定理.针对漂移型灰色二层多目标线性规划问题,提出一种具有全局收敛性质的求解算法.首先通过线性加权模理想点法把多目标转化为单目标;然后当可行域为非空紧集时,利用库恩塔克条件把双层转化为单层,再利用粒子群算法搜索单目标单层线性规划即可得到原问题的解;最后通过算例表明了该算法的有效性.

References

[1]  戴冀峰, 马健霄. 交通工程概论[M]. 北京: 人民交通出版社, 2006: 9-10.
[2]  (Dai J F, Ma J X. Traffic engineering conspectus[M]. Beijing: China Communications Press, 2006: 9-10.)
[3]  田歆, 汪寿阳, 华国伟. 零售商供应链管理的一个系统框架与系统实现[J]. 系统工程理论与实践, 2009, 29(10): 45-52.
[4]  王先甲, 冯尚友. 二层系统最优化理论[M]. 北京: 科学出版社, 1995: 3-4.
[5]  (Wang X J, Feng S Y. Optional theory of bilevel systems[M]. Beijing: Science Press, 1995: 3-4.)
[6]  Dempe S. Foundations of bilevel programming[M]. Dordrecht: Kluwer Academic Publishers, 2002: 7-8.
[7]  Xue Shengjia. Determining the optimal solution set for linear fractional programming[J]. J of Systems Engineering and Electronics, 2002, 11(3): 40-45.
[8]  Dempe S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[J]. Optimization, 2003, 52(3): 333-359.
[9]  Bonnel H, Morgan J. Semivectorial bilevel optimization problem: penalty approach[J]. J of Optimization Theory and Applications, 2006, 131(3): 365-382.
[10]  Shihui Jia, Zhongping Wan, Yuqiang Feng, et al. New partial cooperation model for bilevel programming problem[J]. J of Systems Engineering and Electronics, 2011, 22(2): 263-266.
[11]  Ankhili Z, Mansouri A. An exact penalty on bilevel programs with linear vector optimization lower level[J]. European J of Operational Research, 2009, 197(1): 36-41.
[12]  刘毅, 李为民, 邢清华, 等. 基于双层规划的攻击无人机协同目标分配优化[J]. 系统工程与电子技术, 2010, 32(3): 579-583.
[13]  (Liu Y, Li W M, Xing Q H, et al. Cooperative mission assignment optimization of unmanned combat aerial vehicles based on bilevel programming[J]. Systems Engineering and Electronics, 2010, 32(3): 579-583.)
[14]  刘三阳, 于力, 杨亚红. 一类二层多目标规划的若干性质[J]. 运筹学学报, 2006, 10(3): 126-128.
[15]  (Liu S Y, Yu L, Yang Y H. Some properties of a kind of multi-objective bilevel programming problem[J]. Operations Research Trans, 2006, 10(3): 126-128.)
[16]  Calvete H I, Gale C. Linear bilevel programs with multiple objectives at the upper level[J]. J of Computational and Applied Mathematics, 2010, 234(4): 950-959.
[17]  (Tian X, Wang S Y, Hua G W. System framework and its implementation of supply chain management for retailers[J]. Systems Engineering-Theory & Practice, 2009, 29(10): 45-52.)
[18]  刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2004: 234-235.
[19]  (Liu S F, Dang Y G, Fang Z G. Grey system theory and its application[M]. Beijing: Science Press, 2004: 234-235.)
[20]  曹永强, 曲晓飞. 一类不完全信息线性规划方法[J]. 控制与决策, 1994, 9(5): 346-349.
[21]  (Cao Y Q, Qu X F. An approach to linear programming with incomplete information[J]. Control and Decision, 1994, 9(5): 346-349.)
[22]  钱颂迪, 顾基发, 胡运权, 等. 运筹学[M]. 北京: 清华大学出版社, 2003: 200-205.
[23]  (Qian S D, Gu J F, Hu Y Q, et al. Operations research[M]. Beijing: Tsinghua University press, 2003: 200-205.)
[24]  张恩路, 孟宪云, 李智慧. 灰色二层线性规划问题及其解法[J]. 系统工程理论与实践, 2009, 29 (6): 132-138.
[25]  (Zhang E L, Meng X Y, Li Z H. Problem of grey bilevel linear programming and its algorithm[J]. Systems Engineering-Theory & Practice, 2009, 29 (6): 132-138.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133