全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自主学习和精英群的多子群粒子群算法

DOI: 10.13195/j.kzyjc.2013.1034, PP. 2034-2040

Keywords: 粒子群优化,多子群,精英群,自主学习,多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高动态多子群粒子群算法中粒子学习的自主性,提出一种基于自主学习和精英群的粒子群算法.该算法借鉴教育心理学自主学习的理念,用基础群中粒子自主选择学习对象的操作代替子群的重组操作,并通过精英群局部搜索的配合来达到寻优的目的.将所提出的算法应用于6个测试函数,并与动态多子群PSO等算法进行了比较,比较结果表明,新算法在提高收敛速度、精度和寻优时间等方面具有良好的性能.

References

[1]  Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995: 1942-1948.
[2]  纪震, 廖惠连, 吴青华. 粒子群算法及应用[M]. 北京: 科学出版社, 2009: 235-244.
[3]  (Ji Z, Liao H L, Wu Q H. Particle swarm algorithm and its application[M]. Beijing: Science Publishing House, 2009: 235-244.)
[4]  Bergh F V D. An analysis of particle swarm optimizers[D]. Pretoria: Faculty of Natural and Agricultural Science, University of Pretoria, 2006.
[5]  倪庆剑, 邢汉承, 张志政, 等. 粒子群优化算法研究进展[J]. 模式识别与人工智能, 2007, 20(3): 349-357.
[6]  (Ni Q J, Xing H C, Zhang Z Z, et al. Survey of particle swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 349-357.)
[7]  Lovbjerg M, Rasmussen T K, Krink T, et al. Hybrid particle swarm optimizers with breeding and subpopulations[C]. Proc of the Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann, 2001: 469-476.
[8]  Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]. Proc of IEEE Int Swarm Intelligence Symposium. Piscataway: IEEE Press, 2005: 124-129.
[9]  Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer with local search[C]. Proc of IEEE Congress on Evolutionary Computation. Edinburgh: IEEE Press, 2005: 522-528.
[10]  黄芳, 樊晓平. 基于岛屿群体模型的并行粒子群优化算法[J]. 控制与决策, 2006, 21(2): 175-180.
[11]  (Huang F, Fan X P. Parallel particle swarm optimization algorithm with island population model[J]. Control and Decision, 2006, 21(2): 175-180.)
[12]  吴宪祥, 郭宝龙, 王娟. 基于Lotka-Volterra 模型的双群 协同竞争粒子群优化算法[J]. 控制与决策, 2010, 25(11): 1619-1624.
[13]  (Wu X X, Guo B L, Wang J. Lotka-Volterra model based particle swarm optimization[J]. Control and Decision, 2010, 25(11):1619-1624.)
[14]  Zhao S Z, Suganthan P N, Pan Q K, et al. Dynamic multiswarm particle swarm optimizer with harmony search[J]. Expert Systems with Applications, 2011, 38(4): 3735-3742.
[15]  申荷永. 充满张力的生活空间-勒温的动力心理学[M]. 武汉: 湖北教育出版社, 2001: 77-79.
[16]  (Shen H Y. Tension-filled living space—Lewin’s dynamic psychology[M].Wuhan: Hubei Education Press, 2001: 77-79.)
[17]  陶新民, 刘福荣, 刘玉, 等. 一种多尺度协同变异的粒子群优化算法[J]. 软件学报, 2012, 23(7): 1805-1815.
[18]  (Tao X M, Liu F R, Liu Y, et al. Multi-Scale cooperative mutation particle swarm optimization algorithm[J]. J of Software, 2012, 23(7): 1805-1815.)
[19]  曾华, 吴耀华. 基于进化停滞周期的局部变异PSO 算法及其收敛性分析[J]. 控制与决策, 2010, 25(9): 1333-1337.
[20]  (Zeng H, Wu Y H. PSO algorithm with local mutation in evolution stagnation cycle and its convergence analysis[J]. Control and Decision, 2010, 25(9): 1333-1337.)
[21]  Shi Y, Eberhart R C. A modified particle swarm optimizer[C]. Proc of IEEE Int Congress on Evolutionary Computation. Anchorage: IEEE Press, 1998: 69-73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133