Tan P N, Michael Steinbach, Vipin Kumar. Introduction to data mining[M]. New Jersey: Pearson Education, 2007: 305-402.
[2]
Xia C, Hsu W, Lee M L, et al. BORDER: An efficient computation of boundary points[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3): 289-303.
[3]
Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. Int Conf on Knowledge Discovery and Data Mining. Portland: ACM, 1996: 226-231.
[4]
Qiu B Z, Yue F, Shen J Y. BRIM: An efficient boundary points detecting algorithm[C]. Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2007: 761-768.
[5]
Qiu B Z, Wang S. A boundary detection algorithm of clusters based on dual threshold segmentation[C]. The 7t h Int Conf on Computational Intelligence and Security(CIS). Sanya: IEEE, 2011: 1246-1250.
(Xue L X, Qiu B Z. Boundary points detection algorithm based on coefficient of variation[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 799-802.)
(Wang D, Mao Z Y, Wu M D. Outlier detection algorithm on Shadowed Sets clustering[J]. J of Frontiers of Computer Science and Technology, 2012, 6(11): 985-993.)
[14]
Desoer C A. Slowly varying system x=A(t)x[J]. IEEE Trans on Automatic Control, 1969, 14(6): 780-781.
(Qiu B Z, Yang Y, Du X W. BRINK: An algorithm of boundary points of clusters detection based on local qualitative factors[J]. J of Zhengzhou University: Engineering Science, 2012, 33(3): 117-121.)