全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混合属性数据集的聚类边界检测技术

DOI: 10.13195/j.kzyjc.2013.1282, PP. 171-175

Keywords: 混合属性,高维数据,聚类边界,边界因子,证据积累

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了满足数据分析中获取含有混合属性的数据集聚类的边界需求,提出一种混合属性数据集的聚类边界检测算法(BERGE).该算法利用模糊聚类隶属度定义边界因子以识别候选边界集,然后运用证据积累的思想提取聚类的边界.在综合数据集和真实数据集上的实验结果表明,BERGE算法能有效地检测混合属性数据集、数值属性数据集以及分类属性数据集的聚类边界,与现有同类算法相比具有更高的精度.

References

[1]  Tan P N, Michael Steinbach, Vipin Kumar. Introduction to data mining[M]. New Jersey: Pearson Education, 2007: 305-402.
[2]  Xia C, Hsu W, Lee M L, et al. BORDER: An efficient computation of boundary points[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3): 289-303.
[3]  Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. Int Conf on Knowledge Discovery and Data Mining. Portland: ACM, 1996: 226-231.
[4]  Qiu B Z, Yue F, Shen J Y. BRIM: An efficient boundary points detecting algorithm[C]. Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2007: 761-768.
[5]  Qiu B Z, Wang S. A boundary detection algorithm of clusters based on dual threshold segmentation[C]. The 7t h Int Conf on Computational Intelligence and Security(CIS). Sanya: IEEE, 2011: 1246-1250.
[6]  薛丽香, 邱保志. 基于变异系数的边界点检测算法[J]. 模式识别与人工智能, 2009, 22(5): 799-802.
[7]  (Xue L X, Qiu B Z. Boundary points detection algorithm based on coefficient of variation[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 799-802.)
[8]  邱保志, 王波. 分类数据的聚类边界检测技术[J]. 计算机应用, 2012, 32(6): 1654-1656.
[9]  (Qiu B Z, Wang B. Cluster boundary detection technology for categorical data[J]. J of Computer Applications, 2012, 32(6): 1654-1656.)
[10]  蒋盛益, 李庆华. 一种基于引力的聚类方法[J]. 计算机应用, 2005, 25(2): 286-288.
[11]  (Jiang S Y, Li Q H. Gravity-based clustering approach[J]. J of Computer Applications, 2005, 25(2) : 286-288.)
[12]  王丹, 毛紫阳, 吴孟达. 融合Shadowed Sets 聚类的离群点检测算法[J]. 计算机科学与探索, 2012, 6(11): 985-993.
[13]  (Wang D, Mao Z Y, Wu M D. Outlier detection algorithm on Shadowed Sets clustering[J]. J of Frontiers of Computer Science and Technology, 2012, 6(11): 985-993.)
[14]  Desoer C A. Slowly varying system x=A(t)x[J]. IEEE Trans on Automatic Control, 1969, 14(6): 780-781.
[15]  邱保志, 曹鹤玲. 一种高效的基于联合熵的边界点检测算法[J]. 控制与决策, 2011, 26(1):71-74.
[16]  (Qiu B Z, Cao H L. An efficient boundary points detecting algorithm based on joint entropy[J]. Control and Decision, 2011, 26(1):71-74.)
[17]  邱保志, 杨洋, 杜效伟. BRINK: 基于局部质变因子的聚类边界检测算法[J]. 郑州大学学报: 工学版, 2012, 33(3): 117-121.
[18]  (Qiu B Z, Yang Y, Du X W. BRINK: An algorithm of boundary points of clusters detection based on local qualitative factors[J]. J of Zhengzhou University: Engineering Science, 2012, 33(3): 117-121.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133