(Wang H Q, Huang H. Property and application of extended state observer[J]. Control and Decision, 2013, 28(7): 1078-1082.)
[5]
Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C]. Proc of the American Control Conf. Denver, 2003: 4989-4996.
[6]
Lu Y S, Li Y T. Design of a sliding perturbation estimator with bound estimation[C]. Int Workshop on Variable Structure Systems. Antalya, 2008: 308-313.
[7]
Lu Y S, Chen J S. Design of a perturbation estimator using the theory of variable-structure systems and its application to magnetic levitation systems[J]. IEEE Trans on Industrial Electronics, 1995, 42(3): 281-289.
[8]
Saito E, Katsura S. A filter design method in disturbance observer for improvement of robustness against disturbance in time delay system[C]. Proc of IEEE Int Symposium on Industrial Electronics. Hangzhou, 2012: 1650-1655.
[9]
Yamada K, Murakami I, Ando Y, et al. The parametrization of all disturbance observers for plants with input disturbance[C]. The 4th IEEE Conf on Industrial Electronics and Applications. Xi’an, 2009: 41-46.
[10]
Han J Q. From PID to active disturbance rejection control[J]. IEEE Trans on Industrial Electronics, 2009, 56(3): 900-906.
[11]
Ramirez N M, Hebertt S R, Rodriguez A A, et al. An active disturbance rejection controller for a parallel robot via generalized proportional integral observers[C]. American Control Conference. Montreal, 2012: 5478-5483.
[12]
Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam align with boundary input disturbance[J]. Automatica, 2013, 49(9): 2911-2918.
[13]
Guo B Z, Zhao Z l. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.
[14]
Fliess M, Hebertt S R. An algebraic framework for linear identification[J]. ESAIM: Control, Optimisation and Calculus of Variations, 2003, 9: 151-168.