(Liu S H, Sheng Q J, Wu B, et al. Research on efficient algorithms for rough set methods[J]. Chinese J of Computer, 2003, 26(5): 524-529.)
[5]
常犁云, 王国胤, 吴渝. 一种基于Rough Set 理论的属性约简及规则提取方法[J]. 软件学报, 1999, 10(11): 1206-1211.
[6]
(Chang L Y, Wang G Y, Wu Y. An approach for attribute reduction and rule generation based on rough set theory[J]. J of Software, 1999, 10(11): 1206-1211.)
(Dai J H, Pan Y H. Algorithm for acquisition of decision rules based on classification consistency rate[J]. Control and Decision, 2004, 19(10): 1086-1090.)
(Qian J, Meng X P, Liu D Y, et al. A mining algorithm for concise decision rules based on rough sets theory[J]. Control and Decision, 2007, 22(12): 1368-1372.)
(Zhang Q H, Wang G Y, Liu X Q. Rule acquisition algorithm based on maximal granule[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 388-396.)
[13]
Lin T Y. Granular computing: Practices, theories, andfuture directions[M]. New York: Springer, 2009: 4339-4355.
(Miao D Q, Fan S D. The calculation of knowledgegranulation and its application[J]. System Engineering-Theory & Practice, 2002, 22(1): 48-56.)
[16]
Chen Zehua, Xie Gang, Yan Gaowei, et al. Applicationof a matrix-based binary granular computing algorithm in RST[C]. Proc of IEEE Int Conf on Granular Computing. Beijing: IEEE Press, 2005: 409-412.
(Chen Z H, Cao C Q, Xie G. Granular matrix based rapid reduction algorithm for multivarible truth table[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(8): 745-750.)