全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分类修正的多证据合成方法

DOI: 10.13195/j.kzyjc.2013.1188, PP. 125-130

Keywords: 证据理论,证据分类,修正系数,Dempster规则

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于传统冲突量参数无法有效地衡量证据间的相似程度,提出一种基于分类修正的多证据合成方法,以解决证据合成中的高冲突悖论和“0”悖论.首先,利用证据距离参数、冲突量参数和方向角度参数共同衡量各证据间的相似程度,将证据分为一致证据、不冲突证据、低冲突证据以及高冲突证据4类;然后,利用3个参数赋予各类证据不同的修正系数;最后,利用Dempster规则对修正后的证据进行合成.算例分析表明,所提出的方法能够较好地解决高冲突悖论和“0”悖论,而且保留了证据理论优良的数学性质.

References

[1]  (Jiang W, Zhang A, Deng Y. A novel information fusion method based on our evidence conflict representation[J]. J of Northwestern Polytechnical University, 2010, 28(1): 27-32.)
[2]  陈圣群, 王应明. 证据的分组合成法[J]. 控制与决策, 2013, 28(4): 574-578.
[3]  (Chen S Q, Wang Y M. Grouping method for combination evidence[J]. Control and Decision, 2013, 28(4): 574-578.)
[4]  熊彦铭, 杨战平, 屈新芬. 基于模型修正的冲突证据组合方法[J]. 控制与决策, 2011, 26(6): 883-887.
[5]  (Xiong Y M, Yang Z P, Qu X F. Novel combination method of conflict evidence based on evidential model modification[J]. Control and Decision, 2011, 26(6): 883-887.)
[6]  侯俊. 证据推理的组合方法、评级体系与应用研究[D]. 西安: 西北工业大学, 2006: 38-41.
[7]  (Hou J. The combination rules, performance indexes and application of evidence reasoning[D]. Xi’an: Northwestern Polytechnical University, 2006: 38-41.)
[8]  陈天璐, 阙沛文. D-S 证据理论在数据融合中失效问题的研究[J]. 传感器技术, 2004, 23(12): 25-27.
[9]  (Chen T L, Que P W. Research on invalidation of DS evidential theory in data fusion[J]. J of Transducer Technology, 2004, 23(12): 25-27.)
[10]  杨风暴, 王肖霞. D-S 证据理论的冲突证据合成方法[M]. 北京: 国防工业出版社, 2010: 65-66.
[11]  (Yang F B, Wang X X. Combination method of conflictive evidence in D-S evidence theory[M]. Beijing: National Defense Industry Press, 2010: 65-66.)
[12]  陆文星, 梁昌勇, 丁勇. 一种证据距离的客观权重确定方法[J]. 中国管理科学, 2008, 16(6): 95-98.
[13]  (Lu W X, Liang C Y, Ding Y. A method determining the objective weights of experts based on evidence distance[J]. Chinese J of Management Science, 2008, 16(6): 95-98.)
[14]  彭颖, 沈怀容, 马永一. 一种新的冲突证据融合方法[J]. 兵工学报, 2011, 32(1): 79-85.
[15]  (Peng Y, Shen H R, Ma Y Y. A new fusion method for conflicting evidence[J]. Acta Armamentarii, 2011, 32(1): 79-85.)
[16]  Smets P. The combination of evidence in the transferable belief model[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458.
[17]  Yager R R. On the Dempster-shafer framework and new combination rules[J]. Information Science, 1989, 41(2): 93-137.
[18]  向阳, 史习智. 证据理论合成规则的一点修正[J]. 上海交通大学学报, 1999, 33(3): 113-116.
[19]  (Xiang Y, Shi X Z. Modification on combination rules of evidence theory[J]. J of Shanghai Jiaotong University, 1999, 33(3): 113-116.)
[20]  孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8): 117-119.
[21]  (Sun Q, Ye X Q, Gu W K. A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000, 28(8): 117-119.)
[22]  张山鹰, 潘泉, 张洪才. 一种新的证据推理组合规则[J]. 控制与决策, 2000, 15(5): 540-545.
[23]  (Zhang S Y, Pan Q, Zhang H C. A novel combination rules of evidence theory[J]. Control and Decision, 2000, 15(5): 540-545.)
[24]  邢清华, 雷英杰, 刘付显. 一种按比例分配冲突度的证据推理组合规则[J]. 控制与决策, 2004, 19(12): 1389-1390.
[25]  (Xing Q H, Lei Y J, Liu F X. One combination rule of evidence theory based on distributing conflict in proportion[J]. Control and Decision, 2004, 19(12): 1389-1390.)
[26]  Deng Y, Shi W K, Zhu Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3): 489-493.
[27]  权文, 王晓丹, 王坚, 等. 一种基于置信最大熵模型的证据推理方法[J]. 控制与决策, 2012, 27(6): 899-903.
[28]  (Quan W, Wang X D, Wang J, et al. A combination rule of evidence theory based on brief max-entropy model[J]. Control and Decision, 2012, 27(6): 899-903.)
[29]  Haenni R. Are alternatives to Dempster’s rule of combination real alternatives? Comments on “about the belief combination and the conflict management problem”[J]. Information Fusion, 2002, 3(3): 237-239.
[30]  Murphy C K. Combination belief function when evidence conflict[J]. Decision Support System, 2000, 29(1): 1-9.
[31]  王肖霞. 冲突证据合成规则的研究[D]. 太原: 中北大学, 2007: 39-46.
[32]  (Wang X X. Research on combination rule of evidence theory[D]. Taiyuan: North University of China, 2007: 39-46.)
[33]  Horiuchi T. Decision rule for pattern classification by integrating interval feature values[J]. Pattern Analysis and Machine Intelligence, 1998, 20(4): 440-448.
[34]  蒋雯, 张安, 邓勇. 基于新的证据冲突表示的信息融合方法研究[J]. 西北工业大学学报, 2010, 28(1): 27-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133