全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ESO的复合滑模面非奇异terminal滑模控制

DOI: 10.13195/j.kzyjc.2013.1577, PP. 76-80

Keywords: terminal滑模,收敛时间,抖振,复合滑模面,扩张状态观测器

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统非奇异terminal滑模控制存在的收敛缓慢和控制输入抖振的问题,提出采用复合滑模面函数和扩张状态观测器的控制器设计方法.首先,结合复合滑模面,采用分阶段控制律提高系统收敛速度;然后,在此基础上使用扩张状态观测器在线估计并补偿系统的不确定量,以有效削弱系统未建模动力学导致的抖振;最后,分别证明了以上两种方法的有限时间收敛特性.仿真结果验证了所提出方法的有效性,体现了系统的快速收敛和强鲁棒性等特点.

References

[1]  张巍巍, 王京. 基于指数趋近律的非奇异terminal 滑模控制[J]. 控制与决策, 2012, 27(6): 909-913.
[2]  (Zhang W W, Wang J. Nonsingular terminal sliding model control based on exponential reaching law[J]. Control and Decision, 2012, 27(6): 909-913.)
[3]  Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.
[4]  李升波, 李克强, 王建强, 等. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38(1): 1-8.
[5]  (Li S B, Li K Q, Wang J Q, et al. Nonsingular and fast terminal sliding mode control method[J]. Information and Control, 2009, 38(1): 1-8.)
[6]  胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错控制[J]. 航空学报, 2014, 35(1): 249-258.
[7]  (Hu Q L, Jiang B Y, Shi Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 249-258.)
[8]  韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.
[9]  (Han J Q. Auto-disturbances-rejection controller and it’s applications[J]. Control and Decision, 1998, 13(1): 19-23.)
[10]  韩京清. 自抗扰控制技术—– 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 183-242.
[11]  (Han J Q. Active disturbance rejection control technique — The technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 183-242.)
[12]  Guo B Z, Zhao Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6): 420-430.
[13]  Xia Y Q, Zhu Z, Fu M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Trans on Industrial Electronics, 2011, 58(2): 647-659.
[14]  Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler — Bernoulli beam equation with boundary input disturbance[J]. Automatic, 2013, 49(9): 2911-2918.
[15]  马悦悦, 唐胜景, 郭杰, 等. 基于自抗扰与模糊逻辑的大攻角控制系统设计[J]. 系统工程与电子技术, 2013, 35(8): 1711-1716.
[16]  (Ma Y Y, Tang S J, Guo J, et al. High angle of attack control system design based on ADRC and fuzzy logic[J]. System Engineering and Electronics, 2013, 35(8): 1711-1716.)
[17]  Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances[J]. J of the Franklin Institute, 2012, 349(2): 413-440.
[18]  (Gao W B. Basic theory of variable structure control[M]. Beijing: China Science and Technology Press, 1990: 28-29.)
[19]  Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
[20]  Xia Y Q, Fu M Y. Compound control methodology for flight vehicles[M]. New York: Springer, 2013: 65-81.
[21]  高为炳. 变结构控制理论基础[M]. 北京: 中国科学技术出版社, 1990: 28-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133