全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时序峰值预测的最小二乘支持向量回归模型

, PP. 1745-1750

Keywords: 峰值预测,支持向量回归,加权最小二乘,核密度估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对最小二乘支持向量回归模型中,呈稀疏分布的时序峰值样本拟合预测误差偏大的问题,基于加权最小二乘思想,提出一种新的用于时序峰值预测的最小二乘支持向量回归模型.根据样本分布密度和输出期望幅值,优化了经验风险控制目标.解得模型的拟合预测误差不受样本分布的影响,而且在保持整体样本拟合预测精度的同时,对峰值样本的拟合预测精度有了显著提高.Lorenz时序预测和电力负荷预测的仿真结果表明了模型的有效性.

References

[1]  Adamowski J F. Peak daily water demand forecast modeling using artificial neural networks[J]. Journal of Water Resources Planning and Management,2008,134(2) 119-128.
[2]  Hyndman R J,Shu Fan. Density forecasting for long-term peak electricity demand[J],IEEE TRANSACTIONS ON POWER SYSTEMS,2010,25(2):1142-1153.
[3]  Chapelle O.Haffner P.Vapnik V N. Support vector machines for histogram-based image classification[J]. Neural Networks, 2002,10(5):1055-1064.
[4]  U.Thissen,R.van Brakel,A.P.de Weijer,W.J.Melssen, L.M.C.Buydens.Using support vector machines for time series prediction[J].Chemometrics and Intelligent Laboratory Systems,2003:35-49.
[5]  J.A.K Suykens. Least Squares Support Vector Machines[E]. NATO-ASI Learning Theory and Practice, http://www.esat.kuleuven.ac.be/sista/members/suykens.html,2002: 10-84.
[6]  J.A.K Suykens,J.De Brabanter,L.Lukas,J. Vandewalle. Weighted least squares support vector machines robustness and sparse approximation[J].Neurocomputing, 2002(48):85- 105.
[7]  Willa W.Chen. Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes[J].Biometrika,2010,97(1): 231-237.
[8]  Boyd S P,Vandenberghe L. Convex Optimization[M]. England:Cambridge University Press,2004: 215-242.
[9]  Gavin J. Bowden,Graeme C.Dandy,Holger R.Maier,Input determination for neural network models in water resources applications. Part1-background and methodology, Journal of Hydrology 301(2005),pp.75-92.
[10]  M.M.Caro Lucas,M.B.Araabi,Elaheh Kamaliha. Fuzzy descriptor systems and spectral analysis for chaotic time series prediction[J].Neural Comput&Applic, 2009, 18:991-1004.
[11]  Conggui Yuan, Xinzheng Zhang, Shuqiong Xu. Partial Mutual Information for Input Selection of Time Series Prediction[C].2011 CCDC, to be published.
[12]  Enrico Pisoni,Marcello Farina,Claudio carnevale,Luigi Piroddi.Forecasting peak air pollution levels using NARX models[J].Engineering Applications of Artificial Intelligence,2009(22):593-602.
[13]  Vapnik V N. The Nature of Statistical Learning Theory[M], New York,Springer-Verlag,2000.
[14]  Refaat M Mohamed,Ayman El-Baz,Aly A. Farag. Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm[J].Word Academy of Science,Engineering and Technology,2005:140-143.
[15]  Wentong Cui,Xuefeng Yan. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR[J]. Chemometircs and Intelligent Laboratory Systems,2009, 98(2):130-135.
[16]  Silverman B.W.Density estimation for statistics and data analysis[E].Monographs on Statistics and Applied Probab- ility,http://gemini.econ.umd.edu,2002:1-22.
[17]  http://www.nyiso.com/public/markets_operations/market_data/load_data/index.jsp[Online],2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133