(Wang F, Wan L, Xu Y R, et al. Path planning based on improved artificial potential field for autonomous underwater vehicles[J]. J of Huazhong University of Science and Technology: Nature Science Edition, 2011, 39(S2): 184-187.)
(Zhu Y, Zhang T, Song J Y. Path planning for nonholonomic mobile robots using artificial potential field method[J]. Control Theory & Applications, 2010, 27(2): 152-158.)
(Li X, Zhu D Q. Path planning for autonomous underwater vehicle based on artificial potential field method[J]. J of Shanghai Maritime University, 2010, 31(2): 35-39.)
[11]
Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[J]. Autonomous Robots, 1996, 3(2/3): 79-89.
(Shang Y, Xu Y R, Pang Y J. AUV global path planning using case-based learning algorithm[J]. Robot, 1998, 20(6): 427-432.)
[14]
Yilmaz N K, Evangelinos C, Lermusiaux F J, et al. Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming[J]. IEEE J of Oceanic Engineering, 2008, 33(4): 522-537.
[15]
Toledo F J, Luis J D, Tomas L M, et al. Map building with ultrasonic sensors of indoor environments usingneural networks[C]. IEEE Int Conf on Systems, Man and Cybernetics. Nashville, 2000: 920-925.
[16]
Wong S C, MacDonald B A. A topological coverage algorithm for mobile robots[C]. IEEE Int Conf on Intelligent Robots System. Las Vegas, 2003: 1685-1690.
[17]
Oh J S, Choi Y H, Park J B, et al. Complete coverage navigation of cleaning robots using triangular-cell-based map[J]. IEEE Trans on Industrial Electronics, 2004, 51(3): 718-726.
[18]
Ghatee M, Mohades A. Motion planning in order to optimize the length and clearance applying a hopfield neural network[J]. Export Systems with Applications, 2009, 36(3): 4688-4695.
[19]
Pereira F B. Bio-inspired algorithms for the vehicle routing problem[M]. Berlin: Springer, 2009: 1-34.
[20]
Zhu A, Yang S X. A neural network approach to task assignment of multi-robots[J]. IEEE Trans Neural Network, 2006, 17(5): 1278-1287.
[21]
Yan M Z, Zhu D Q. An algorithm of complete coverage path planning for autonomous underwater vehicles[J]. Key Engineering Materials, 2011(467/468/469): 1377-1385.
[22]
Li Shuai, Guo Yi. Neural-network based AUV path planning in estuary environments[C]. Proc of the 10th World Congress on Intelligent Control and Automation. Beijing, 2012: 3724-3730.
[23]
Yang S X, Meng M H. Real-time collision-free motion planning of mobile robots using neural dynamics based approaches[J]. IEEE Trans on Neural Network, 2003, 14(6): 1541-1552.
[24]
Grossberg S. Nonlinear neural networks: Principles, mechanisms and architectures[J]. Neural Networks, 1988, 1(1): 17-61.
[25]
Yang S X, Luo C. A neural network approach to complete coverage path planning[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34(1): 718-725.
[26]
Luo C, Yang S X. A bio-inspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environment[J]. IEEE Trans on Neural Network, 2008, 19(7): 1279-1298.
[27]
Li H, Yang S X, Seto M L. Neural-network-based path planning for multi-robot system with moving obstacles[J]. IEEE Trans on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2009, 39(4): 410-419.
[28]
Luo C M. Neural dynamics and computation for complete coverage path planning of mobile cleaning robots[D]. Ontario: School of Engineering, Guelph University, 2002: 51-53.
(Yan M Z. Biological inspired neural dynamics model and its application in AUV path planning[D]. Shanghai: Logistics Engineering College, Shanghai Maritime University, 2013.)
[31]
Cohen M A, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Trans on Systems, Man and Cybernetics, 1983, 13(5): 815-826.