全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于生物启发模型的AUV三维自主路径规划与安全避障算法

DOI: 10.13195/j.kzyjc.2014.0339, PP. 798-806

Keywords: 三维栅格地图,生物启发模型,路径规划,安全避障

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对自治水下机器人(AUV)的路径规划问题,在三维栅格地图的基础上,给出一种基于生物启发模型的三维路径规划和安全避障算法.首先建立三维生物启发神经网络模型,利用此模型表示AUV的三维工作环境,神经网络中的每一个神经元与栅格地图中的位置单元一一对应;然后,根据神经网络中神经元的活性输出值分布情况自主规划AUV的运动路径.静态环境与动态环境下仿真实验结果表明了生物启发模型在AUV三维水下环境中路径规划和安全避障上的有效性.

References

[1]  徐玉如, 庞永杰, 甘永, 等. 智能水下机器人技术展望[J]. 智能系统学报, 2006, 1(1): 9-16.
[2]  (Xu Y R, Pang Y J, Gan Y, et al. AUV-stat e?of-the-art and prospect[J]. CAAI Trans on Intelligent Systems, 2006, 1(1): 9-16.)
[3]  朱大奇, 颜明重. 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25(7): 961-967.
[4]  (Zhu D Q, Yan M Z. Survey on technology of mobile robot path planning[J]. Control and Decision, 2010, 25(7): 961-967.)
[5]  王芳, 万磊, 徐玉如, 等. 基于改进人工势场的水下机器人路径规划[J]. 华中科技大学学报: 自然科学版, 2011, 39(增2): 184-187.
[6]  (Wang F, Wan L, Xu Y R, et al. Path planning based on improved artificial potential field for autonomous underwater vehicles[J]. J of Huazhong University of Science and Technology: Nature Science Edition, 2011, 39(S2): 184-187.)
[7]  朱毅, 张涛, 宋靖雁. 非完整移动机器人的人工势场法路径规划[J]. 控制理论与应用, 2010, 27(2): 152-158.
[8]  (Zhu Y, Zhang T, Song J Y. Path planning for nonholonomic mobile robots using artificial potential field method[J]. Control Theory & Applications, 2010, 27(2): 152-158.)
[9]  李欣, 朱大奇. 基于人工势场法的自治水下机器人路径规划[J]. 上海海事大学学报, 2010, 31(2): 35-39.
[10]  (Li X, Zhu D Q. Path planning for autonomous underwater vehicle based on artificial potential field method[J]. J of Shanghai Maritime University, 2010, 31(2): 35-39.)
[11]  Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[J]. Autonomous Robots, 1996, 3(2/3): 79-89.
[12]  尚游, 徐玉如, 庞永杰. 自主式水下机器人全局路径规划的基于案例的学习算法[J]. 机器人, 1998, 20(6): 427-432.
[13]  (Shang Y, Xu Y R, Pang Y J. AUV global path planning using case-based learning algorithm[J]. Robot, 1998, 20(6): 427-432.)
[14]  Yilmaz N K, Evangelinos C, Lermusiaux F J, et al. Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming[J]. IEEE J of Oceanic Engineering, 2008, 33(4): 522-537.
[15]  Toledo F J, Luis J D, Tomas L M, et al. Map building with ultrasonic sensors of indoor environments usingneural networks[C]. IEEE Int Conf on Systems, Man and Cybernetics. Nashville, 2000: 920-925.
[16]  Wong S C, MacDonald B A. A topological coverage algorithm for mobile robots[C]. IEEE Int Conf on Intelligent Robots System. Las Vegas, 2003: 1685-1690.
[17]  Oh J S, Choi Y H, Park J B, et al. Complete coverage navigation of cleaning robots using triangular-cell-based map[J]. IEEE Trans on Industrial Electronics, 2004, 51(3): 718-726.
[18]  Ghatee M, Mohades A. Motion planning in order to optimize the length and clearance applying a hopfield neural network[J]. Export Systems with Applications, 2009, 36(3): 4688-4695.
[19]  Pereira F B. Bio-inspired algorithms for the vehicle routing problem[M]. Berlin: Springer, 2009: 1-34.
[20]  Zhu A, Yang S X. A neural network approach to task assignment of multi-robots[J]. IEEE Trans Neural Network, 2006, 17(5): 1278-1287.
[21]  Yan M Z, Zhu D Q. An algorithm of complete coverage path planning for autonomous underwater vehicles[J]. Key Engineering Materials, 2011(467/468/469): 1377-1385.
[22]  Li Shuai, Guo Yi. Neural-network based AUV path planning in estuary environments[C]. Proc of the 10th World Congress on Intelligent Control and Automation. Beijing, 2012: 3724-3730.
[23]  Yang S X, Meng M H. Real-time collision-free motion planning of mobile robots using neural dynamics based approaches[J]. IEEE Trans on Neural Network, 2003, 14(6): 1541-1552.
[24]  Grossberg S. Nonlinear neural networks: Principles, mechanisms and architectures[J]. Neural Networks, 1988, 1(1): 17-61.
[25]  Yang S X, Luo C. A neural network approach to complete coverage path planning[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34(1): 718-725.
[26]  Luo C, Yang S X. A bio-inspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environment[J]. IEEE Trans on Neural Network, 2008, 19(7): 1279-1298.
[27]  Li H, Yang S X, Seto M L. Neural-network-based path planning for multi-robot system with moving obstacles[J]. IEEE Trans on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2009, 39(4): 410-419.
[28]  Luo C M. Neural dynamics and computation for complete coverage path planning of mobile cleaning robots[D]. Ontario: School of Engineering, Guelph University, 2002: 51-53.
[29]  颜明重. 生物启发神经动力学模型及其在AUV路径规划中的应用[D]. 上海: 上海海事大学物流工程学院, 2013.
[30]  (Yan M Z. Biological inspired neural dynamics model and its application in AUV path planning[D]. Shanghai: Logistics Engineering College, Shanghai Maritime University, 2013.)
[31]  Cohen M A, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Trans on Systems, Man and Cybernetics, 1983, 13(5): 815-826.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133