全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Hammerstein模型的感应电机变频器调速系统神经网络控制

DOI: 10.13195/j.kzyjc.2014.0572, PP. 1148-1152

Keywords: 感应电机,变频器,Hammerstein,模型,神经网络控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对感应电机变频器调速系统的非线性特点,提出一种基于Hammerstein模型的神经网络控制方法.Hammerstein模型由静态非线性模块和动态线性模块组成.首先,利用ARMA模型实现对感应电机变频器调速系统的线性动态模块辨识;然后,基于该辨识模型,实现调速系统非线性静态模块神经网络逆模型辨识与系统直接逆控制;最后,针对控制过程中存在的电机负载扰动问题,设计了神经网络直接逆控制器在线学习与控制策略.仿真实验表明,所提出的控制策略可以获得满意的控制效果.

References

[1]  戴先中, 刘国海, 张兴华. 恒压频比变频调速系统的神经网络逆控制[J]. 中国电机工程学报, 2005, 25(7): 109-114.
[2]  (Dai X Z, Liu G H, Zhang X H. Neural network inverse control of variable frequency speed-regulating system in ??/?? mode[J]. Proc of the CSEE, 2005, 25(7): 109-114.)
[3]  陈伯时, 徐荫定. 电流滞环控制PWM逆变器异步电动机的非线性解耦控制系统[J]. 自动化学报, 1994, 20(1): 50-56.
[4]  (Chen B S, Xu Y D. Nonlinear decoupling control of hysteresis band current-controlled induction motor drive fed by PWM inverter[J]. Acta Automation Sinica, 1994, 20(1): 50-56.)
[5]  刘国海, 张浩, 戴先中. 神经网络逆系统在电机变频调速系统中的应用[J]. 电工技术学报, 2003, 18(3): 67-71.
[6]  (Liu G H, Zhang H, Dai X Z. The application of artificial neural network inverse system in speed control of AC variable frequency induction motor system[J]. Trans of China Electrotechnical Society, 2003, 18(3): 67-71.)
[7]  王新, 戴先中. 同步旋转坐标系下感应电机神经网络逆控制[J]. 电气传动, 2008, 38(5): 52-57.
[8]  (Wang X, Dai X Z. ANN inverse control method of induction motor in synchronous rotating reference frame[J]. Electric Drive, 2008, 38(5): 52-57.)
[9]  王新, 戴先中. 基于神经网络逆的感应电机矢量控制改进方法[J]. 电力电子技术, 2008, 42(1): 48-50.
[10]  (Wang X, Dai X Z. Improved method of induction motor’s FOC based on ANN inverse[J]. Power Electronics, 2008, 42(1): 48-50.)
[11]  张浩, 刘国海. 基于神经网络逆系统的感应电机变频系统解耦控制[J]. 江苏大学学报: 自然科学版, 2002, 23(2): 88-91.
[12]  (Zhang H, Liu G H. The decoupling control of AC variable frequency motor system based on artificial neural network inverse system method[J]. J of Jiangsu University: Natural Science, 2002, 23(2): 88-91.)
[13]  Narendra K, Gallman P. An iterative method for the identification of nonlinear systems using a Hammerstein model[J]. IEEE Trans on Automatic Control, 1966, 11(3): 546-550.
[14]  Vesely I, Pohl L. Parameters identification of PMSM through Hammerstein model[C]. Proc of the 39th Conf on IEEE Industrial Electronics Society. Vienna, 2013, 11: 3030-3035.
[15]  Jahani M, Mojallali H. Neural network based modeling of traveling wave ultrasonic motor using genetic algorithm[C]. Proc of the 2nd Int Conf on Computer and Automation Engineering. Singapore, 2010, 2: 486-490.
[16]  Kara T, Eker I. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments[J]. Energy Conversion and Management, 2004, 45(7): 1087-1106.
[17]  阮毅, 陈伯时. 矢量控制系统是异步电动机非线性解耦控制的一类实现[J]. 电气传动, 1993(6): 2-8.
[18]  (Ruan Y, Chen B S. Vector control system — A class of realization fo nonlinear decoupling control of induction motors[J]. Electric Drive, 1993(6): 2-8.)
[19]  Xiang W, Sheng J, Chen Z H. Model predictive control based on neural networks for Hammerstein type nonlinear systems[J]. J of Graduate School of the Chinese Academy of Sciences, 2008, 25(2): 224-232.
[20]  Zhu Y. Multivariable system identification for process control[M]. New York: Elsevier Science Inc, 2001: 187-188.
[21]  Jeng J C, Huang H P. Nonparametric identification for control of MIMO Hammerstein systems[J]. Industrial & Engineering Chemistry Research, 2008, 47(17): 6640-6647.
[22]  戴先中, 张兴华, 刘国海. 感应电机的神经网络逆系统线性化解耦控制[J]. 中国电机工程学报, 2004, 24(1): 112-117.
[23]  (Dai X Z, Zhang X H, Liu G H. Decouping control of induction motor based on neural networks inverse[J]. Proc of the CSEE, 2004, 24(1): 112-117.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133