全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

仿射切换系统的有限时间鲁棒??∞跟踪控制

DOI: 10.13195/j.kzyjc.2014.0476, PP. 1126-1130

Keywords: 仿射切换系统,有限时间有界,??∞,控制,线性矩阵不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对一类含分段常数项的仿射切换系统,在平均滞留时间分析方法的基础上研究此类系统的有限时间有界性(FTB)和干扰抑制问题.给出了仿射切换系统的FTB概念以及有限时间鲁棒??∞性能的定义,并在此基础上提出使得系统有限时间内有界的充分条件以及??∞控制器的设计方法,所得结论均以线性矩阵不等式(LMI)的形式给出.最后通过算例验证了所提出方法的正确性和有效性.

References

[1]  Garcia G, Tarbouriech S, Bernussou J. Finite-time stabilization of linear time-varying continuous systems[J]. IEEE Trans on Automatic Control, 2009, 54(2): 364-369.
[2]  林相泽, 都海波, 李世华. 离散线性切换系统的一致有限时间稳定分析和反馈控制及其在网络控制系统中的应用[J]. 控制与决策, 2011, 26(6): 841-846.
[3]  Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems[J]. SIAM J on Control and Optimization, 2004, 43(4): 1263-1271.
[4]  Chen G X, Xiang Z R. Robust ??∞ finite-time control of switched stochastic systems with time delay[C]. Proc of the 31 st Chinese Control Conf. Hefei, 2012: 1596-1601.
[5]  Muhammad Naveed Iqbal, Jian Xiao, Weiming Xiang. Finite time ??∞ filtering for uncertain discrete time switching systems[J]. Trans of the Institute of Measurement and Control, 2013, 35(6): 851-862.
[6]  Cardim R, Teixeira M C M, Assuncao E, et al. Variable-structure control design of switched systems with an application to a DC-DC power converter[J]. IEEE Trans on Industrial Electronics, 2009, 56(9): 3505-3513.
[7]  高亚辉, 刘志远, 陈虹. 基于异步观测器的离散分段仿射系统控制: LMI 方法[J]. 自动化学报, 2009,35(10): 1341-1346.
[8]  (Gao Y H, Liu Z Y, Chen H. Non-synchronized observer-based control of discrete-time piecewise affine systems: An LMI approach[J]. Acta Automatica Sinica, 2009, 35(10): 1341-1346.)
[9]  刘志林, 裴润, 慕香永, 等. 输入受限的参数摄动分段仿射系统鲁棒控制[J]. 系统仿真学报, 2007, 19(22): 5234-5242.
[10]  (Liu Z L, Pei R, Mu X Y, et al. Robust control of piecewise affine system with constrained input and parameter perturbation[J]. J of System Simulation, 2007, 19(22): 5234-5242.)
[11]  Ferrari-Trecate G, Cuzzola F A, Mignone D, et al. Analysis and control with performance of piecewise affine and hybrid systems[C]. Proc of the American Control Conf. Arlington, 2001: 200-205.
[12]  Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems[J]. IEEE Trans on Automatic Control, 1998, 43(4): 555-559.
[13]  Zhai G, Hu B, Yasuda K. Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach[J]. Int J of Systems Science, 2001, 32(8): 1055-1061.
[14]  Weiss L, Infante E F. Finite time stability under perturbing forces and on product spaces [J]. IEEE Trans on Automatic Control, 1967, 12(1): 54-59.
[15]  (Lin X Z, Du H B, Li S H. Uniform finite-time stability and feedback stabilization for discrete-time switched linear systems and its application to networked control systems[J]. Control and Decision, 2011, 26(6): 841-846.)
[16]  Amato F, Ambrosino R, Ariola M, et al. Finite-time stability of linear time-varying systems with jumps[J]. Automatica, 2009, 45(5): 1354-1358.
[17]  何舒平, 刘飞. Markov 跳变系统的有限时间状态反馈镇定[J]. 控制与决策, 2009, 24(1): 91-95.
[18]  (He S P, Liu F. Finite-time stabilization for Markov jump systems via state feedback[J]. Control and Decision, 2009, 24(1): 91-95.)
[19]  Xiang W M, Xiao J. Finite-time stability and stabilization for switched linear systems[J]. Int J of System Science, 2013, 44(2): 384-400.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133