全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于信息熵的改进人工蜂群算法

DOI: 10.13195/j.kzyjc.2014.0377, PP. 1121-1125

Keywords: 人工蜂群算法,改进,信息熵,组合优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了克服人工蜂群算法在处理复杂性问题时收敛速度慢、收敛精度不高、易早熟等缺陷,在原始人工蜂群算法的基础上引入信息熵.信息熵本身是不确定性的一种度量,由信息熵的值来度量人工蜂群算法中跟随蜂选择的不确定性,通过控制信息熵的值达到控制算法中跟随蜂选择过程的目的,实现算法的自适应调节.通过对测试函数和不同规模TSP问题的模拟仿真,对人工蜂群算法、蚁群算法和其他改进方法进行了对比,验证了所提出改进方法的可行性和有效性.

References

[1]  (Yang J, Ma L. Wasp colony algorithm for vehicle routing problem with soft time windows[J]. Forecasting, 2010, 29(6): 67-69.)
[2]  肖永豪, 余卫宇. 基于蜂群算法的图像边缘检测[J]. 计算机应用研究, 2010, 27(7): 2748-2750.
[3]  (Xiao Y H, Yu W Y. Bee colony algorithm for image edge detection[J]. Application Research of Computers, 2010, 27(7): 2748-2750.)
[4]  Shannon C E. Prediction and entropy of printed english[J]. Bell System Technical J, 1951, 30(1): 50-64.
[5]  周书敬, 李彦苍. 房地产投资分析方法及应用[M]. 北京: 兵器工业出版社, 2013: 8-13.
[6]  (Zhou S J, Li Y C. Real estate investment analysis method and application[M]. Beijing: The Publishing House of Ordnance Industry, 2013: 8-13.)
[7]  柳寅, 马良. 模糊人工蜂群算法的旅行商问题求解[J]. 计算机应用研究, 2013, 30(9): 2694-2696.
[8]  (Liu Y, Ma L. Fuzzy artificial bees colony algorithm for solving traveling salesman problem[J]. Application Research of Computers, 2013, 30(9): 2694-2696.)
[9]  王霜. 大型TSP 问题的蚁群优化规则研究[D]. 长春: 吉林大学商学院, 2012: 48-51.
[10]  (Wang S. Research on ant colony optimization rules of large TSP problem[D]. Changchun: Business School, Jilin University, 2012: 48-51.)
[11]  Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
[12]  刘勇, 马良. 函数优化的蜂群算法[J]. 控制与决策, 2012, 27(6): 886-890.
[13]  (Liu Y, Ma L. Bees algorithm for function optimization[J]. Control and Decision, 2012, 27(6): 886-890.)
[14]  杨进, 马良. 蜂群优化算法在带软时间窗的车辆路径问题中的应用[J]. 预测, 2010, 29(6): 67-69.
[15]  Horng M H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Application. 2011, 38(11): 13785-13791.
[16]  Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(9): 2888-2901.
[17]  O¨ ztu¨rk C, Karaboˇa D, Grkemli B. Artificial bee colony algorithm for dynamic deployment of wireless sensor networks[J]. Turkish J of Electrical Engineering and Computer Sciences, 2012, 20(2): 1-8.
[18]  Bitam S, Batouche M, Talbi E. A survey on bee colony algorithms[C]. IEEE Int Symposium on Parallel & Distributed Processing, Workshops and PhdForum. Atlanta, 2010: 1-8.
[19]  刘三阳, 张平, 朱明敏. 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29(1): 123-128.
[20]  (Liu S Y, Zhang P, Zhu M M. Artificial bee colony algorithm based on local dearch[J]. Control and Decision, 2014, 29(1): 123-128.)
[21]  罗钧, 李研. 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25(12): 1913-1916.
[22]  (Luo J, Li Y. Artificial bee colony algorithm with chaoticsearch strategy[J]. Control and Decision, 2010, 25(12): 1913-1916.)
[23]  暴励, 曾建潮. 一种双种群差分蜂群算法[J]. 控制理论与应用, 2011, 28(2): 266-272.
[24]  (Bao L, Zeng J C. A bi-group differential artificial bee colony algorithm[J]. Control Theory & Applications, 2011, 28(2): 266-272.)
[25]  步登辉, 李景. 基于动态整体更新和试探机制的蜂群算法[J]. 计算机应用研究, 2011, 28(7): 2508-2511.
[26]  (Bu D H, Li J. Artificial bee colony algorithm based on dynamic wholly updating and tentative mechanism[J]. Application Research of Computers, 2011, 28(7): 2508-2511.)
[27]  胡珂, 李迅波, 王振林. 改进的人工蜂群算法性能[J]. 计算机应用, 2011, 31(4): 1107-1110.
[28]  (Hu K, Li X B, Wang Z L. Performance of an improved artificial bee colony algorithm[J]. J of Computer Application, 2011, 31(4): 1107-1110.)
[29]  王慧颖, 刘建军, 王全洲. 改进的人工蜂群算法在函数优化问题中的应用[J]. 计算机工程与应用, 2011, 7(13): 36-39.
[30]  (Wang H Y, Liu J J, Wang Q Z. Modified artificial bee colony algorithm for numerical function optimization[J]. Computer Engineering and Applications, 2011, 7(13): 36-39.)
[31]  葛宇, 梁静. 基于极值优化策略的改进的人工蜂群算法[J]. 计算机科学, 2013, 40(6): 247-251.
[32]  (Ge Y, Liang J. Improved artificial bee colony algorithms based on extremal optimization strategy[J]. Computer Science, 2013, 40(6): 247-251.)
[33]  Alam M S, Kabir M W, Islam M M. Self-adaptation of mutation step size in artificial bee colony algorithm for continuous function optimization[C]. The 13th Int Conf on Computer and Information Technology. Dhaka, 2010: 69-74.
[34]  Guo P, Cheng W M, Liang J. Global artificial bee colony search algorithm for numerical function optimization[C]. The 7th Int Conf on Natural Computation. Shanghai: IEEE, 2011: 1280-1283.
[35]  Bolaji A L, Khader A T, Al-betar M A. An improved artificial bee colony for course timetabling[C]. The 6th Int Conf on Bio-inspired Computing: Theories Applications. Penang: IEEE Press, 2011: 9-14.
[36]  El-Abd M. A hybrid ABC-SPSO algorithm for cintinuous function optimization[C]. IEEE Symposium on Swarm Intelligence. Paris: 2011: 1-6.
[37]  Rajasekhar A, Abraham A, Pant M. Levy mutated artificial bee colony algorithm for globaoptimization[C]. IEEE Int Conf on Systems, Man and Cybernettics. Anchorage: IEEE, 2011: 655-662.
[38]  GaoWF, Liu S Y. Improved artificial bee colony algorithm for global optimization[J]. Information Processing Letters, 2011, 111(17): 871-882.
[39]  Gao W F, Liu S Y. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3): 687-697.
[40]  徐中民, 张志强, 程国栋, 等. 运用信息熵理论研究条件估值调查中的抽样问题[J]. 系统工程理论与实践, 2003, 23(3): 129-133.
[41]  (Xu Z M, Zhang Z Q, Cheng G D, et al. The application of information entropy on the sample amount and content in contingent valuation survey[J]. Systems Engineering-Theory & Practice, 2003, 23(3): 129-133.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133