全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可逆冷带轧机速度张力系统的耗散Hamilton控制

DOI: 10.13195/j.kzyjc.2014.0462, PP. 985-992

Keywords: 可逆冷带轧机,速度张力系统,协调控制,非线性干扰观测器,侵入与不变流形,耗散Hamilton控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究基于侵入与不变流形(I&I)自适应方法和非线性干扰观测器(NDO)的可逆冷带轧机速度张力系统耗散Hamilton控制问题.首先采用I&I自适应方法估计系统的摄动参数;其次,通过预反馈建立系统速度张力外环的耗散Hamilton模型,并利用互联和阻尼配置以及能量整形方法设计耗散Hamilton控制器;再次,选用NDO对系统电流内环的外扰进行观测,并引入设计的积分滑模控制器中进行补偿;最后将该方法应用于某1422mm可逆冷带轧机速度张力系统中进行仿真,结果验证了所提出方法的有效性.

References

[1]  Geddes E J M, Postlethwaite I. Improvements in product quality in tandem cold rolling using robust multivariable control[J]. IEEE Trans on Control Systems Technology, 1998, 6(2): 257-269.
[2]  Jiang Z Y, Wei D, Tieu A K. Analysis of cold rolling of ultra thin strip[J]. J of Materials Processing Technology, 2009, 209(9): 4584-4589.
[3]  Li S Z, Yin Y D, Xu J, et al. Numerical simulation of continuous tension leveling process of thin strip steel and its application[J]. J of Iron and Steel Research, Int, 2007, 14(6): 8-13.
[4]  Liu G M, Di H S, Zhou C L, et al. Tension and thickness control strategy analysis of two stands reversible cold rolling mill[J]. J of Iron and Steel Research, Int, 2012, 19(10): 20-25.
[5]  He J B, He Y Y, Guo S, et al. Tension robust control strategy based on self-optimizing algorithm[J]. WSWAS Trans on Systems and Control, 2009, 4(3): 151-161.
[6]  He J J, Yu S Y, Zhong J. Decoupling control of tension based on pole assignment for temper mill[J]. Control Theory & Applications, 2003, 20(2): 244-248.
[7]  刘国海, 刘平原, 沈跃, 等. 两电机变频调速系统的神经网络广义逆解耦控制[J]. 中国电机工程学报, 2008, 28(36): 98-102.
[8]  (Liu G H, Liu P Y, Shen Y, et al. Neural network generalized inverse decoupling control of two-motor variable frequency speed-regulating system[J]. Proc of the CSEE, 2008, 28(36): 98-102.)
[9]  刘礼新, 方一鸣, 李建雄, 等. 可逆冷带轧机速度张力系统的分散重叠控制[J]. 控制理论与应用, 2011, 28(5): 675-680.
[10]  (Liu L X, Fang Y M, Li J X, et al. Decentralized overlapping control for speed and tension in reversing coldstrip mill[J]. Control Theory & Applications, 2011, 28(5): 675-680.)
[11]  彭志辉, 马光, 周晨. 经纱张力速度分散控制[J]. 纺织学报, 2011, 32(10): 127-133.
[12]  (Peng Z H, Ma G, Zhou C. Tension and velocity decentralized control of let-off system[J]. J of Textile Research, 2011, 32(10): 127-133.)
[13]  刘乐, 方一鸣, 李建雄, 等. 可逆冷带轧机速度张力多变量耦合系统的建模及分散控制[J]. 控制理论与应用, 2014, 31(1): 42-48.
[14]  (Liu L, Fang Y M, Li J X, et al. Modeling and decentralized control for the speed and tension multivariable coupling system of reversible cold strip mill[J]. Control Theory & Applications, 2014, 31(1): 42-48.)
[15]  Astolfi A, Ortega R. Immersion and Invariance: A new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Trans on Automatic Control, 2003, 48(4): 590-606.
[16]  Liu X B, Ortega R, Su H Y, et al. On adaptive control of nonlinearly parameterized nonlinear systems: Towards a constructive procedure[J]. Systems & Control Letters, 2011, 60(1): 36-43.
[17]  Chen W H, Balance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Trans on Industrial Electronics, 2000, 47(4): 932-938.
[18]  王玉振, 葛树志, 程代展. 广义Hamilton 系统的观测器及基于观测器的??∞ 控制设计[J]. 中国科学: E 辑, 2004, 34(12): 1313-1328.
[19]  (Wang Y Z, Ge S Z, Cheng D Z. Designed for observers of the generalized Hamilton systems and ??∞ control based observers[J]. Science in China: Series E, 2004, 34(12): 1313-1328.)
[20]  任丽娜, 刘福才, 焦晓红. 风力发电系统的Hamilton 建模及其无速度传感器控制[J]. 控制理论与应用, 2012, 29(4): 457-464.
[21]  (Ren L N, Liu F C, Jiao X H. Hamilton modeling and speed-sensorless control for wind turbine systems[J]. Control Theory & Applications, 2012, 29(4): 457-464.)
[22]  孙静, 张承慧, 裴文卉, 等. 考虑铁损的电动汽车用永磁同步电机Hamilton 镇定控制[J]. 控制与决策, 2012, 27(12): 1899-1902.
[23]  (Sun J, Zhang C H, Pei W H, et al. Hamilton stabilizing control of permanent magnet synchronous motor considering iron loss for electric vehicle[J]. Control and Decision, 2012, 27(12): 1899-1902.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133