全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

传感器故障条件下的自适应UKF算法

DOI: 10.13195/j.kzyjc.2014.1370, PP. 2025-2032

Keywords: 目标跟踪,传感器故障,自适应滤波,无迹卡尔曼滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目标跟踪中传感器故障导致滤波发散或者滤波精度不高的问题,提出一种自适应无迹卡尔曼滤波(UKF)算法.该算法在滤波过程中,根据自适应估计原理引入自适应矩阵因子,实时调整系统状态向量和量测新息向量的协方差,以满足无迹卡尔曼滤波算法的最优性条件,并采取措施对滤波发散的情况进行判断和抑制.与传统UKF和已有自适应UKF算法相比,该自适应UKF算法显著提高了滤波精度和数值稳定性,且具有应对传感器故障的自适应能力.仿真实验结果表明了所提出算法的有效性.

References

[1]  Yu Z J, Wei J M, Liu H T. A new adaptive maneuvering target tracking algorithm using artificial neural networks[C]. Proc of the International Joint Conf on Neural Networks. Washington DC: IEEE Press, 2008: 901-905.
[2]  Hajiyev C, Caliskan F. Sensor/actuator fault diagnosis based on statistical analysis of innovation sequence and Robust Kalman filtering[J]. Aerospace Science and Technology, 2000, 4(6): 415-422.
[3]  Soken H E, Hajiyev C. Pico satellite attitude estimation via robust unscented Kalman filter in the presence of measurement faults[J]. ISA transactions, 2010, 49(3): 249-256.
[4]  Hajiyev C, Ersin H. Robust adaptive kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults[J]. Aerospace Science and Technology, 2013, 28(1): 1-8.
[5]  Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4): 541-553.
[6]  Tan C P, Edwards C. Sliding mode observers for detection and reconstruction of sensor faults[J]. Automatica, 2002, 38(10): 1815-1821.
[7]  Tan C P, Edwards C. Sliding mode observers for robust fault reconstruction in nonlinear systems[J]. Lecture Notes in Control and Information Science, 2003, 281(1): 373-383.
[8]  Yang Yuanxi, Gao Weiguang. A new learning statistic for adaptive filter based on predicted residuals[J]. Progress in Natural Science, 2006, 16(8): 833-837.
[9]  Yang Yuanxi, GaoWeiguang. An optimal adaptive Kalman filter[J]. J of Geodesy, 2006, 80(4): 177-183.
[10]  Yang Y, He H, Xu G. Adaptively robust filtering for kinematic geodetic positioning[J]. J of Geodesy, 2001, 75(2/3): 109-116.
[11]  Boutayeb M, Rafaralahy H, Darouach M. Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems[J]. IEEE Trans on Automatic Control, 1997, 42(4): 581-586.
[12]  孙枫, 唐李军. Cubature 卡尔曼滤波器-卡尔曼滤波算法[J]. 控制与决策, 2012, 27(10): 1561-1565.
[13]  (Sun F, Tang L J. Cubature Kalman filter-Kalman filter algorithm[J]. Control and Decision, 2012, 27(10): 1561-1565.)
[14]  孙枫, 唐李军. Cubature 卡尔曼滤波器与Unscented 卡尔曼滤波估计精度比较[J]. 控制与决策, 2013, 28(2): 303-312.
[15]  (Sun F, Tang L J. Estimation precision comparison of Cubature Kalman filter and Unscented Kalman filter[J]. Control and Decision, 2013, 28(2): 303-312.)
[16]  Myers K A, Tapley B D. Adaptive sequential estimation with unknown noise statistics[J]. IEEE Trans on Automatic Control, 1976, 21(4): 520-523.
[17]  Hide C, Moore T, Smith M. Adaptive Kalman filtering for low-cost INS/GPS[J]. J of Navigation, 2003, 56(1): 143-152.
[18]  石勇, 韩崇昭. 自适应UKF 算法在目标跟踪中的应用[J]. 自动化学报, 2011, 37(6): 754-759.
[19]  (Shi Y, Han C Z. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 37(6): 754-759.)
[20]  Sorenson H W. Kalman filtering: Theory and application[M]. New York: IEEE Press, 1985: 23-47.
[21]  Uhlmann J K. Algorithm for multiple target tracking[J]. American Science, 1992, 80(2): 128-141.
[22]  Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems[C]. Proc of the American Control Conf. Seattle Washington, 1995, 3: 1628-1632.
[23]  Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
[24]  Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[C]. Proc of the IEEE, 2004, 92(3): 401-422.
[25]  Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J]. IEEE Proc on Radar and Signal Processing, 1993, 140(2): 107-113.
[26]  Jayamohan S, Mathurakani M. Noise analysis of marginalized particle filter for target tracking[C]. Int Conf on Microelectronics Communication and Renewable Energy. Madrid: IEEE, 2013: 1-6.
[27]  Xiong K, Chan C, Zhang H S. Detection of satellite attitude sensor faults using the UKF[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(2): 480-491.
[28]  Gaoge Hu, Shesheng Gao, Li Xue. A novel adaptive unscented Kalman filter[C]. 2012 Int Conf on Intelligent Control and Information Processing. Dalian: IEEE Press, 2012: 497-502.
[29]  赵琳, 王小旭, 孙明, 等. 基于极大后验估计和指数加权的自适应UKF滤波算法[J]. 自动化学报, 2010, 36(7): 1007-1019.
[30]  (Zhao L, Wang X X, Sun M, et al. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting[J]. Acta Automatica Sinica, 2010, 36(7): 1007-1019.)
[31]  Ersin Soken H, Shin-ichiro Sakai. Residual based adaptive unscented kalman filter for satellite attitude estimation[C]. AIAA Guidance, Navigation and Control Conf. Minneapolis, 2012: 4476.
[32]  James Richard Forbes. Extended kalman filter and sigma point filter approaches to adaptive filtering[C]. AIAA Guidance, Navigation and Control Conf. Toronto, 2010: 7748.
[33]  Song Qi, Han Jianda. An adaptive UKF algorithm for the state and parameter estimation of a mobile robot[J]. Acta Automatica Sinica, 2008, 34(1): 72-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133