全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于群组判断离差的偏好集结方法

DOI: 10.13195/j.kzyjc.2014.1386, PP. 1960-1966

Keywords: 离差,几何平均集结,群组判断,同质性水平,主成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对群决策偏好集结中违反Pareto最优性的情况,设计一种基于群组判断几何离差的同质性集结方法.该方法在集结前进行几何离差测试,以确定个体决策信息的离差水平.离差较小时,可基于几何平均集结;对于离差较大且修正复杂度较高的决策信息,采用主成分分析(PCA)从高维决策信息中提取大多数相关信息,在不依赖主观分析的情况下进行加权集结.仿真实验表明,所提出的方法能够在不违背Pareto最优性的基础上集结离差较大的群决策信息.

References

[1]  徐玖平, 陈建中. 群决策理论与方法及实现[M]. 北京: 清华大学出版社, 2009: 29-30.
[2]  (Xu J P, Chen J Z. The theory and method of group decision making with its realization[M]. Beijing: Tsinghua University Press, 2009: 29-30.)
[3]  孙世权, 高淑萍, 梁原, 等. 基于数据整合技术的多属性群决策方法[J]. 系统工程和电子技术, 2012, 34(10): 2094-2097.
[4]  (Sun S Q, Gao S P, Liang Y, et al. Method of multiple attributive group decision making based on data fusion[J]. Systems Engineering and Electronics, 2012, 34(10): 2094-2097.)
[5]  陈可, 陈晓红. 一种基于区间数判断矩阵的加权AIP群决策方法[J]. 控制与决策, 2009, 24(9): 1402-1405.
[6]  (Chen K, Chen X H. A new method of AIP group decisionmaking with decision-makers weight based on interval judgment matrices[J]. Control and Decision, 2009, 24(9): 1402-1405.)
[7]  Condon E, Golden B,Wasil E. Visualizing group decisions in the analytic hierarchy process[J]. Computers and Operations Research, 2003, 30(10): 1435-1445.
[8]  Groselj P, Zadnik Stirn L. Acceptable consistency of aggregated comparison matrices in analytic hierarchy process[J]. European J of Operational Research, 2012, 223(2): 417-420.
[9]  Aczel J, Saaty T L. Procedures for synthesizing ratio judgments[J]. J of Mathematical Psychology, 1983, 27(1): 93-102.
[10]  Ramanathan R, Ganesh L S. Group preference aggregation methods employed in the AHP: An evaluation and an intrinsic process for deriving member’s weightages[J]. European J of Operational Research, 1994, 79(2): 249-265.
[11]  Saaty T L, Vargas L G. Dispersion of group judgments[J]. Mathematical and Computer Modelling, 2007, 46(7/8): 918-925.
[12]  Zhu B, Xu Z S. Stochastic preference analysis in numerical preference relations[J]. European J of Operational Research, 2014, 237(2): 628-633.
[13]  Zhu B, Xu Z S. Analytic hierarchy process-hesitant group decision making[J]. European J of Operational Research, 2014, 239(3): 794-801.
[14]  Hosoo Lee, Yongdo Lim, Takeaki Yamazaki. Multivariable weighted geometric means of positive definite matrices[J]. Linear Algebra and its Applications, 2011, 435(2): 307-322.
[15]  宋建社, 曹小平, 曹耀钦, 等.装备维修信息化工程[M]. 北京:国防工业出版社, 2005: 97-101.
[16]  (Song J S, Cao X P, Cao Y Q, et al. Equipment maintenance information engineering[M]. Beijing: National Defense Industry Press, 2005: 97-101.)
[17]  Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
[18]  Syms C. Principal component analysis[J]. Earth Systems and Environmental Sciences, 2008, 218(9): 2940-2949.
[19]  Jolliffe I T. Principal component analysis, series: Springer series in statistics[M]. New York: Springer, 2002: 79-81.
[20]  张仲敏, 李俊山, 宋凭, 等. 一种基于FAHP的多Agent 电子对抗装备状态智能评判方法[J]. 兵工学报, 2014, 35(4): 516-522.
[21]  (Zhang Z M, Li J S, Song P, et al. An Intelligent Decision Approach Based on Fuzzy Analytic Hierarchy Process for Service Status of Electronic Countermeasures Equipment Using Multi-agent[J]. Acta Armamentarii, 2014, 35(4): 516-522.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133