全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于信赖域Newton算法的ELM网络

, PP. 757-760

Keywords: 极端学习机,信赖域Newton,,共轭梯度法,回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对极端学习机(ELM)网络伪逆输出权值计算方法的运算复杂度制约其训练速度问题,提出一种基于信赖域Newton算法的新型ELM网络(TRON-ELM),并采用信赖域Newton算法求解ELM网络的输出权值.该算法首先构造一个ELM网络代价函数的Newton方程,并将其作为一个无约束优化问题,采用共轭梯度法求解,避免了求代价函数Hessian矩阵逆的运算,提高了训练速度,信赖域条件的存在保证了算法的整体收敛性.仿真实验结果验证了所提出方法的有效性.

References

[1]  Rumelhart D E, McClelland J L, eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1 [M]. Cambridge, MA:: MIT Press, 1986. [2]Haykin S. Neural Networks: A Comprehensive Foundation[M]. New Jersey: Prentice Hall, 1999. [3]叶军, 张新华. 多层前向神经网络的快速学习算法及其应用[J]. 控制与决策, 2002, S1: 817-819. [4]王俊年, 申群太, 周少武, 等. 基于种群小生境微粒群算法的前向神经网络设计[J]. 控制与决策, 2005, 09: 981-985+991. [5]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [6]Feng G R, Huang G B, Lin Q P, et al. Error Minimized Extreme Learning Machine With Growth of Hidden Nodes and Incremental Learning . IEEE Transactions on Neural Networks, 2009, 20(8): 1352-1357. [7]Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-92. [8]史志伟, 韩敏. ESN岭回归学习算法与混沌时间序列预测. 控制与决策, 2007, 22(3): 258-261. [9]Lin C J , Weng R C , Keerthi S S. Trust region Newton method for large-scale logistic regression[J]. Journal of Machine Learning Research, 2008, 9: 627-650. [10]Nash S G.. A survey of truncated-Newton methods [J]. Journal of Computational and Applied Mathematics. 2000, 124(1-2): 45-59. [11]Lin C J, More J J. Newton’s method for large-scale bound constrained problems[J]. SIAM Journal on Optimization, 1999, 9: 1100–1127. [12]Kao W C, Chung K M, Sun C L, et al. Decomposition methods for linear support vector machines[J]. Neural Computation, 2004, 16(8): 1689-1704

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133